We report here the genetic cause of the X-linked syndrome of psychosis, pyramidal signs, and macro-orchidism (PPM-X) in a three-generation family manifesting the disorder as a mutation in the methyl-CpG binding-protein 2 (MECP2) gene in Xq28. The A140V mutation was found in all affected males and all carrier females in the family. To date, descriptions have been published of two patients with independent familial mental retardation (MR) and two patients with sporadic MR who harbor this specific mutation in the MECP2 gene. This strongly suggests that A140V is a hot spot of mutation resulting in moderate to severe MR in males. A simple and reliable PCR approach has been developed for detection of the hot spot A140V mutation to prescreen any other unexplained cases of MR before further extensive mutation analyses.
Genetic studies indicate that chromosome 7q is likely to contain an autism susceptibility locus (AUTS1). We have followed a positional candidate gene approach to identify relevant gene(s) and report here the analysis of reelin (RELN), a gene located under our peak of linkage. Screening RELN for DNA changes identified novel missense variants absent in a large control group; however, the low frequency of these mutations does not explain the relatively strong linkage results on 7q. Furthermore, analysis of a previously reported triplet repeat polymorphism and intragenic single nucleotide polymorphisms, using the transmission disequilibrium test, provided no evidence for association with autism in IMGSAC and German singleton families. The analysis of RELN suggests that it probably does not play a major role in autism aetiology, although further analysis of several missense mutations is warranted in additional affected individuals.
The results from several genome scans indicate that chromosome 2q21-q33 is likely to contain an autism susceptibility locus. We studied the potential contribution of nine positional and functional candidate genes: TBR-1; GAD1; DLX1; DLX2; cAMP-GEFII; CHN1; ATF2; HOXD1 and NEUROD1. Screening these genes for DNA variants and association analysis using intragenic single nucleotide polymorphisms did not provide evidence for a major role in the aetiology of autism. Four rare nonsynonymous variants were identified, however, in the cAMP-GEFII gene. These variants were present in five families, where they segregate with the autistic phenotype, and were not observed in control individuals. The significance of these variants is unclear, as their low frequency in IMGSAC families does not account for the relatively strong linkage signal at the 2q locus. Further studies are needed to clarify the contribution of cAMP-GEFII gene variants to autism susceptibility. Molecular Psychiatry (2003) 8, 916-924.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.