Normal-weight subjects are able to comply with a 1 meal/d diet. When meal frequency is decreased without a reduction in overall calorie intake, modest changes occur in body composition, some cardiovascular disease risk factors, and hematologic variables. Diurnal variations may affect outcomes.
An unresolved issue in the field of diet and health is if and how changes in meal frequency affect energy metabolism in humans. We therefore evaluated the influence of reduced meal frequency without a reduction in energy intake on glucose metabolism in normal weight healthy male and female subjects. The study was a randomized cross-over design, with 2 eight-week treatment periods (with an intervening 11 week off-diet period) in which subjects consumed all of their calories for weight maintenance distributed in either 3 meals or 1 meal per day (consumed between 17:00 and 21:00). Energy metabolism was evaluated at designated time points throughout the study by performing morning oral glucose tolerance tests (OGTT) and measuring levels of glucose, insulin, glucagon, leptin, ghrelin, adiponectin, resistin and brain-derived neurotrophic factor (BDNF). Subjects consuming 1 meal/d exhibited higher morning fasting plasma glucose levels, greater and more sustained elevations of plasma glucose concentrations and a delayed insulin response in the OGTT compared to subjects consuming 3 meal/d. Levels of ghrelin were elevated in response to the 1 meal/ d regimen. Fasting levels of insulin, leptin, ghrelin, adiponectin, resistin and BDNF were not significantly affected by meal frequency. Subjects consuming a single large daily meal exhibit elevated fasting glucose levels, and impaired morning glucose tolerance associated with a delayed insulin response, during a 2 month diet period compared to those consuming 3 meals/day. The impaired glucose tolerance was reversible and was not associated with alterations in the levels of adipokines or BDNF.
A double-blind, randomized clinical trial was conducted to determine the effect of consumption of supplemental whey protein (WP), soy protein (SP), and an isoenergetic amount of carbohydrate (CHO) on body weight and composition in free-living overweight and obese but otherwise healthy participants. Ninety overweight and obese participants were randomly assigned to 1 of 3 treatment groups for 23 wk: 1) WP; 2) SP (each providing ~56 g/d of protein and 1670 kJ/d); or 3) an isoenergetic amount of CHO. Supplements were consumed as a beverage twice daily. Participants were provided no dietary advice and continued to consume their free-choice diets. Participants’ body weight and composition data were obtained monthly. Dietary intake was determined by 24-h dietary recalls collected every 10 d. After 23 wk, body weight and composition did not differ between the groups consuming the SP and WP or between SP and CHO; however, body weight and fat mass of the group consuming the WP were lower by 1.8 kg (P < 0.006) and 2.3 kg (P < 0.005), respectively, than the group consuming CHO. Lean body mass did not differ among any of the groups. Waist circumference was smaller in the participants consuming WP than in the other groups (P < 0.05). Fasting ghrelin was lower in participants consuming WP compared with SP or CHO. Through yet-unknown mechanisms, different sources of dietary protein may differentially facilitate weight loss and affect body composition. Dietary recommendations, especially those that emphasize the role of dietary protein in facilitating weight change, should also address the demonstrated clinical potential of supplemental WP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.