Nonobese diabetic (NOD) mice spontaneously develop insulitis and destruction of pancreatic islet β cells similar to type 1 diabetes mellitis in humans. Insulitis also occurs in the BDC2.5 TCR transgenic line of NOD mice that express the rearranged TCR α- and β-chain genes of a diabetogenic NOD CD4 T cell clone. When activated with syngeneic islet cells in culture, BDC2.5 T cells adoptively transfer disease to NOD recipients, but the identity of the islet cell Ag responsible for pathogenicity is not known. To characterize the autoantigen(s) involved, BDC2.5 T cells were used to screen a combinatorial peptide library arranged in a positional scanning format. We identified more than 100 decapeptides that stimulate these T cells at nanomolar concentrations; they are then capable of transferring disease to NOD-scid mice. Surprisingly, some of the peptides include sequences similar (8 of 10 residues) to those found within the 528–539 fragment of glutamic acid decarboxylase 65. Although this 12-mer glutamic acid decarboxylase 65 fragment is only slightly stimulatory for BDC2.5 T cells (EC50 > 100 μM), a larger 16-mer fragment, 526–541, shows activity in the low micromolar range (EC50 = 2.3 μM). Finally, T cells from prediabetic NOD mice respond spontaneously to these peptide analogs in culture; this finding validates them as being related to a critical autoantigen involved in the etiology of spontaneous diabetes and indicates that their further characterization is important for a better understanding of underlying disease mechanisms.
Adams–Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in large cohorts are currently limited. The purpose of this study was therefore to comprehensively examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screening of 194 AOS/ACC/TTLD probands/families was conducted using next‐generation and/or capillary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising 56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken together with previous reports, these findings bring the total number of reported disease variants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor, underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT (3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important genotype–phenotype correlations. This cohort offers potential for further gene identification to address missing heritability.
Previous studies examining the effect of nitric oxide synthase (NOS) inhibition on the course of experimental allergic encephalomyelitis (EAE) have yielded conflicting results. This may relate to the use of nonspecific inhibitors and to differences between active and adoptive EAE. We examined the effect of treatment with L-N-(1-iminoethyl)lysine (L-NIL), a selective inhibitor of the cytokine-inducible isoform of NOS, on the clinical course of active and adoptive EAE in Lewis rats. We find that while L-NIL treatment of recipients is protective in adoptive EAE, treatment of active EAE with L-NIL leads to a marked accentuation of disease expression. In L-NIL-treated animals treated with myelin basic protein/complete Freund's adjuvant (MBP/CFA), disease onset is accelerated and clinical symptoms are more severe. Accentuation of integrated disease scores is seen even if L-NIL treatment is started 5 days following immunization. The histological findings in involved spinal cords from L-NIL-treated animals with active EAE are similar to those from untreated animals with similar clinical scores. L-NIL treatment of MBP/CFA-immunized animals does not prevent recovery from clinical symptoms, nor does it allow for reinduction of disease in animals previously immunized with MBP/CFA. Treatment of F344 rats, a strain which is relatively nonsusceptible for EAE, with L-NIL results in consistent evidence of EAE following immunization with MBP/CFA. These findings, together with our previous work on interstitial nephritis, support a role for endogenously generated NO in immunoregulation of T cell responses following immunization with antigen in CFA, and suggest that inducibility of NOS expression may be an important susceptibility factor for autoimmunity.
The mucin MUC1 molecule is overexpressed on a variety of adenocarcinomas and is thus, a potential target for immunotherapy. Of the MUC1 peptides that bind to HLA-A*0201(A2), M1.2 (LLLLTVLTV) from the signal sequence appears to be the most immunogenic in humans. Here we have shown that large numbers (10(9)) of tetramer-binding M1.2-specific cytotoxic T lymphocytes (CTL) can be generated ex vivo from circulating precursors, derived from healthy adults. However, there was significant interpersonal variation in the level of co-stimulatory signal required. Tetramer-binding cells also required maturation in culture to become proficient killers of the HLA-A2(+) MUC1(+) MCF7 cell line, known to express a low number of endogenously processed M1.2. The functional avidity of M1.2-specific CTL, however, was low as compared to CTL specific for an HIV-1 epitope. Despite the low avidity, M1.2-specific CTL were polyfunctional, secreting multiple cytokines upon degranulation with antigen recognition. To identify potential agonist peptides that may be superior immunogens, an M1.2-specific CTL culture was used to scan a large nonameric combinatorial peptide library. Of 54 predicted peptides, 4 were "consensus" agonists because they were recognized by CTL from two other donors. Two agonists, p29 (LLPWTVLTV) and p15 (VLLWTVLTV), were equally stimulatory when loaded onto C1R target cells transfected with wild-type HLA-A2. Both agonists induced IL-2, TNF-alpha, IFN-gamma, and degranulation with M1.2-specific CTL. In contrast, production of these cytokines, which are tightly regulated by specific activation through the T cell receptor, was restricted when the CTL were stimulated with peptides loaded onto C1R cells that were transfected with an HLA-A2 molecule bearing a mutation that abrogates binding to the CD8 co-receptor. Thus, activation by both M1.2 and its agonists was dependent upon CD8, showing that compensation by the co-receptor was necessary for the human T cell response to M1.2.
Adams-Oliver syndrome (AOS) is a rare congenital disease characterized by aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). It shows significant genetic heterogeneity and can be transmitted by autosomal dominant or recessive inheritance. Recessive inheritance is associated with mutations of DOCK6 or EOGT; however, only few cases have been published so far. We present two families with EOGT-associated AOS. Due to pseudodominance in one family, the recognition of the recessive inheritance pattern was difficult. We identified two novel AOS-causing mutations (c.404G>A/p.Cys135Tyr and c.311 +1G>T). The phenotype in the presented families was dominated by large ACC, whereas TTLD were mostly subtle or even absent and no major malformations occured. Our observations along with the previously published cases indicate that the two types of recessive AOS (EOGT-vs. DOCK6-associated) differ significanty regarding the frequency of neurologic or ocular deficits. K E Y W O R D SAdams-Oliver syndrome, aplasia cutis congenita, autosomal recessive, EOGT, transversal terminal limb defect
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.