Impaired regulation of mitochondrial dynamics, which shifts the balance towards fission, is associated with neuronal death in age-related neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. A role for mitochondrial dynamics in acute brain injury, however, has not been elucidated to date. Here, we investigated the role of dynamin-related protein 1 (Drp1), one of the key regulators of mitochondrial fission, in neuronal cell death induced by glutamate toxicity or oxygen-glucose deprivation (OGD) in vitro, and after ischemic brain damage in vivo. Drp1 siRNA and small molecule inhibitors of Drp1 prevented mitochondrial fission, loss of mitochondrial membrane potential (MMP), and cell death induced by glutamate or tBid overexpression in immortalized hippocampal HT-22 neuronal cells. Further, Drp1 inhibitors protected primary neurons against glutamate excitotoxicity and OGD, and reduced the infarct volume in a mouse model of transient focal ischemia. Our data indicate that Drp1 translocation and associated mitochondrial fission are key features preceding the loss of MMP and neuronal cell death. Thus, inhibition of Drp1 is proposed as an efficient strategy of neuroprotection against glutamate toxicity and OGD in vitro and ischemic brain damage in vivo. Mitochondria play crucial roles in energy metabolism, regulation of free radical formation and calcium storage, thereby determining essential metabolic functions and cell survival. 1 Further, mitochondria are highly dynamic organelles that undergo constant fission and fusion and these morphological changes are required for efficient ATP production, calcium buffering, regulation of signal transduction and apoptosis. 2 In neurons, mitochondrial fission is also essential for axonal transport of the organelles into areas of high metabolic demand, 3 whereas mitochondrial fusion supports substitution and regeneration of mitochondrial proteins, mtDNA repair and functional recovery. 2,4 Consistent with the critical roles of mitochondrial dynamics in neurons, defects in mitochondrial fission and fusion proteins are associated with a wide array of inherited or acquired neurodegenerative diseases such as Charcot-Marie-Tooth disease or Alzheimer's disease, respectively. 2 Fission and fusion defects may limit mitochondrial motility, decrease energy production, promote oxidative stress and lead to accumulating of mtDNA defects, thereby promoting neuronal dysfunction and cell death. 1 Recently, enhanced mitochondrial fragmentation was associated with induction of neuronal death triggered by oxidative stress. 5 These data imply that during neuronal cell death, the tubular mitochondrial network is fragmented into smaller and functionally impaired organelles. 5 It is, however, a matter of ongoing controversy, whether mitochondrial fragmentation is cause or consequence in programmed cell death.Current knowledge of the mechanisms regulating mitochondrial dynamics indicates that fission and fusion of mitochondria are under control of highly conserved dynamin-relate...
BackgroundGene delivery systems are essentially necessary for the gene therapy of human genetic diseases. Gene therapy is the unique way that is able to use the adjustable gene to cure any disease. The gene therapy is one of promising therapies for a number of diseases such as inherited disorders, viral infection and cancers. The useful results of gene delivery systems depend open the adjustable targeting gene delivery systems. Some of successful gene delivery systems have recently reported for the practical application of gene therapy.Main bodyThe recent developments of viral gene delivery systems and non-viral gene delivery systems for gene therapy have briefly reviewed. The viral gene delivery systems have discussed for the viral vectors based on DNA, RNA and oncolytic viral vectors. The non-viral gene delivery systems have also treated for the physicochemical approaches such as physical methods and chemical methods. Several kinds of successful gene delivery systems have briefly discussed on the bases of the gene delivery systems such as cationic polymers, poly(L-lysine), polysaccharides, and poly(ethylenimine)s.ConclusionThe goal of the research for gene delivery system is to develop the clinically relevant vectors such as viral and non-viral vectors that use to combat elusive diseases such as AIDS, cancer, Alzheimer, etc. Next step research will focus on advancing DNA and RNA molecular technologies to become the standard treatment options in the clinical area of biomedical application.
We have previously determined that the C2-domain of human factor V (residues 2037-2196) is required for expression of cofactor activity and binding to phosphatidylserine (PS)-containing membranes. Naturally occurring factor V inhibitors and a monoclonal antibody (HV-1) recognized epitopes in the amino terminus of the C2-domain (residues 2037-2087) and blocked PS binding. We have now investigated the function of individual amino acids within the C2-domain using charge to alanine mutagenesis. Charged residues located within the C2-domain were changed to alanine in clusters of 1-3 mutations per construct. In addition, mutants W2063A, W2064A, (W2063, W2064)A, and L2116A were constructed as well. The resultant 30 mutants were expressed in COS cells using a B-domain deleted factor V construct (rHFV des B). All mutants were expressed efficiently based on the polyclonal antibody ELISA. The charged residues, Arg(2074), Asp(2098), Arg(2171), Arg(2174), and Glu(2189) are required for maintaining the structural integrity of the C2-domain of factor V. Four of these residues (Arg(2074), Asp(2098), Arg(2171), and Arg(2174)) correspond to positions in the factor VIII C-type domains that have been identified as point mutations in patients with hemophilia A. The epitope for the inhibitory monoclonal antibody HV-1 has been localized to Lys(2060) through Glu(2069) in the factor V C2-domain. The epitope for the inhibitory monoclonal antibody 6A5 is composed of amino acids His(2128) through Lys(2137). The PS-binding site in the factor V C2-domain includes amino acid residues Trp(2063) and Trp(2064). This site overlaps with the epitope for monoclonal antibody HV-1. These factor V C2-domain mutants should provide valuable tools for further defining the molecular interactions responsible for factor V binding to phospholipid membranes.
Water-soluble lipopolymer (WSLP), which consisted of polyethylenimine (PEI, 1800 Da) and cholesterol, was characterized as a gene carrier to smooth muscle cells and myocardium. Acid-base titration showed that WSLP had a proton-buffering effect. The size of WSLP/plasmid DNA (pDNA) complex was around 70 nm. WSLP/pDNA complex was transfected to A7R5 cells, a smooth muscle cell line. WSLP showed the highest transfection at a 40/1 N/P ratio. WSLP has higher transfection efficiency than PEI (1800 and 25 000 Da), SuperFect, and lipofectamine. In addition, WSLP has less cytotoxicity than PEI (25 000 Da), SuperFect, and lipofectamine. Since WSLP has cholesterol moiety, it may utilize cellular cholesterol uptake pathway, in which lowdensity lipoprotein (LDL) is involved. An inhibition study with free cholesterol or low-density lipoprotein (LDL) showed that transfection was inhibited by cholesterol or LDL, suggesting that WSLP/pDNA complex is transfected to the cells through the cholesterol uptake pathway. To evaluate the transfection efficiency to myocardium, WSLP/pDNA complex was injected into the rabbit myocardium. WSLP showed higher transfection than PEI and naked pDNA. WSLP expressed the transgene for more than 2 weeks. In conclusion, WSLP is an efficient carrier for local gene transfection to myocardium, and useful in in vivo gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.