Many Holocene estuaries were infilled to form convergent, single‐channel systems, while others remained partially or wholly unfilled. This difference in the degree of infilling depends partly on the balance between fluvial and coastal sediment input and the hydrodynamics that can export sediment. However, it remains unclear to what degree this balance is tipped by mud supply and eco‐engineering vegetation, and by what planform patterns the infilling proceeds. This study aims to explore experimentally how mud and vegetation change the degree and process of infilling, elevate and merge bars above intertidal levels and affect the planform of estuaries. To this end, three experiments were conducted in the Metronome, a flume that tilts periodically to create tidal currents, wherein forced tidal asymmetry resulted in net importing estuaries. In the second and third experiments, mud was supplied and in the third experiment seedlings were released of three vegetation species with eco‐engineering traits at a laboratory scale. With only sand, the estuary fills sufficiently to form a multi‐channel pattern with intertidal bars. Both mud and vegetation settle on intertidal bars and on the fluvial bay‐head delta, thereby contributing to bar stabilization and further estuary infilling, pointing at effective strategies to keep up with future sea‐level rise. This reduces channel mobility and effectively narrows the summed subtidal channel width toward an ideally converging funnel shape. This seems especially effective where vegetation stabilizes the mud. The experiments suggest that a range of steady states exists between the end‐members of an unfilled and a completely infilled, ideal estuary.
Nature-based strategies, such as wave attenuation by tidal marshes, are increasingly proposed as a complement to mitigate the risks of failure of engineered flood defense structures such as levees. However, recent analysis of historic coastal storms revealed smaller dike breach dimensions if there were natural, high tidal marshes in front of the dikes. Since tidal marshes naturally only experience weak flow velocities (~0-0.3 ms-1 during normal spring tides), we lack direct observations on the stability of tidal marsh sediments and vegetation under extreme flow velocities (order of several ms-1) as may occur when a dike behind a marsh breaches. As a first approximation, the stability of a tidal marsh sediment bed and winter-state vegetation under high flow velocities were tested in a flume. Marsh monoliths were excavated from Phragmites australis marshes in front of a dike along the Scheldt estuary (Dutch-Belgian border area) and installed in a 10 m long flume test section. Both sediment bed and vegetation responses were quantified over 6 experimental runs under high flow velocities up to 1.75 ms-1 and water depth up to 0.35 m for 2 hours. These tests showed that even after a cumulative 12 hours exposure to high flow velocities, erosion was limited to as little as a few millimeters. Manual removal of the aboveground vegetation did not enhance the erosion either. Present findings may be related to the strongly consolidated, clay- and silt-rich sediment and P. australis root system in this experiment. During the flow exposure, the P. australis stems were strongly bent by the water flow, but the majority of all shoots recovered rapidly when the flow had stopped. Although present results may not be blindly extrapolated to all other marsh types, they do provide a strong first indication that marshes can remain stable under high flow conditions, and confirm the potential of well-developed tidal marshes as a valuable extra natural barrier reducing flood discharges towards the hinterland, following a dike breach. These outcomes promote the consideration to implement tidal marshes as part of the overall flood defense and to rethink dike strengthening in the future.
Managed realignment is the landward relocation of a primary flood defence line. Because of this relocation, former land re-inundates, intertidal habitats can restore and new foreshores can develop adjacent to relocated dikes. Therefore, managed realignment can be considered a promising climate change adaptation measure that enables naturebased flood protection. This paper describes the Hedwige-Prosperpolder realignment preparations and aims to contribute to increased nature-based flood protection in future realignment projects. The Hedwige-Prosperpolder is located along the Scheldt estuary on the border of the Netherlands and Belgium. The return of tidal flow into the polder will be facilitated by dike adjustments and manmade creeks. We argue that due to climate change further research is needed on the potential of sustainable flood risk reduction by managed realignment. The Hedwige-Prosperpolder can serve as a Living Lab with many research possibilities during the realignment preparations and after the dikes will be breached. Sustainable managed realignment asks for research on the connection of the relocated dike to the intertidal habitat, both for nature restoration and for improved flood protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.