In atherosclerosis and Alzheimer’s disease, deposition of the altered-self components oxidized low-density lipoprotein (LDL) and β-amyloid triggers a protracted sterile inflammatory response. Although chronic stimulation of the innate immune system is believed to underlie the pathology of these diseases, the molecular mechanisms of activation remain unclear. Here we show that oxidized LDL and β-amyloid trigger inflammatory signaling through a heterodimer of Toll-like receptors 4 and 6. Assembly of this novel heterodimer is regulated by signals from the scavenger receptor CD36, a common receptor for these disparate ligands. Our results identify CD36-TLR4-TLR6 activation as a common molecular mechanism by which atherogenic lipids and β-amyloid stimulate sterile inflammation and suggest a new model of TLR heterodimerization triggered by co-receptor signaling events.
In Alzheimer’s disease soluble amyloid beta (sAβ) causes synaptic dysfunction and neuronal loss. Receptors involved in clearance of sAβ are not known. Here we use shRNA screening and identify the scavenger receptor Scara1 as a receptor for sAβ expressed on myeloid cells. To determine the role of Scara1 in clearance of sAβ in vivo, we cross Scara1 null mice with PS1-APP mice, a mouse model of Alzheimer’s disease and generate PS1-APP- Scara1-deficient mice. Scara1 deficiency markedly accelerates Aβ accumulation leading to increased mortality. In contrast, pharmacological upregulation of Scara1 expression on mononuclear phagocytes increases Aβ clearance. This approach is a potential treatment strategy for Alzheimer’s disease.
Alzheimer's disease (AD) is increasing in prevalence with the aging population. Deposition of amyloid-β (Aβ) in the brain of AD patients is a hallmark of the disease and is associated with increased microglial numbers and activation state. The interaction of microglia with Aβ appears to play a dichotomous role in AD pathogenesis. On one hand, microglia can phagocytose and clear Aβ, but binding of microglia to Aβ also increases their ability to produce inflammatory cytokines, chemokines, and neurotoxic reactive oxygen species (ROS). Scavenger receptors, a group of evolutionally conserved proteins expressed on the surface of microglia act as receptors for Aβ. Of particular interest are SCARA-1 (scavenger receptor A-1), CD36, and RAGE (receptor for advanced glycation end products). SCARA-1 appears to be involved in the clearance of Aβ, while CD36 and RAGE are involved in activation of microglia by Aβ. In this review, we discuss the roles of various scavenger receptors in the interaction of microglia with Aβ and propose that these receptors play complementary, nonredundant functions in the development of AD pathology. We also discuss potential therapeutic applications for these receptors in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.