Attractive colloids diffuse and aggregate to form gels, solid-like particle networks suspended in a fluid. Gravity is known to strongly impact the stability of gels once they are formed. However, its effect on the process of gel formation has seldom been studied. Here, we simulate the effect of gravity on gelation using both Brownian dynamics and a lattice-Boltzmann algorithm that accounts for hydrodynamic interactions. We work in a confined geometry to capture macroscopic, buoyancyinduced flows driven by the density mismatch between fluid and colloids. These flows give rise to a stability criterion for network formation, based on an effective accelerated sedimentation of nascent clusters at low volume fractions that disrupts gelation. Above a critical volume fraction, mechanical strength in the forming gel network dominates the dynamics: the interface between the colloid-rich and colloid-poor region moves downward at an ever decreasing rate. Finally, we analyze the asymptotic state, the colloidal gel-like sediment, which we find not to be appreciably impacted by the vigorous flows that can occur during the settling of the colloids. Our findings represent the first steps toward understanding how flow during formation affects the life span of colloidal gels.
Locally (re)structuring colloidal gels — micron-sized particles forming a connected network with arrested dynamics — enables precise tuning of the micromechanical and -rheological properties of the system. A recent experimental...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.