The trend of distance learning education has increased year by year because of the rapid advancement of information and communication technologies. Distance learning system can be regarded as one of ubiquitous computing applications since the learners can study anywhere even in mobile environments. However, the instructor cannot know if the learners comprehend the lecture or not since each learner is physically isolated. Therefore, a framework which detects the learners' concentration condition is required. If a distance learning system obtains the information that many learners are not concentrated on the class due to the incomprehensible lecture style, the instructor can perceive it through the system and change the presentation strategy. This is a contextaware technology which is widely used for ubiquitous computing services. In this paper, an efficient distance learning system, which accurately detects learners' concentration condition during a class, is proposed. The proposed system uses multiple biological information which are learners' eye movement metrics, i.e. fixation counts, fixation rate, fixation duration and average saccade length obtained by an eye tracking system. The learners' concentration condition is classified by using machine learning techniques. The proposed system has performed the detection accuracy of 90.7% when Multilayer Perceptron is used as a classifier. In addition, the effectiveness of the proposed eye metrics has been confirmed. Furthermore, it has been clarified that the fixation duration is the most important eye metric among the four metrics based on the investigation of evaluation experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.