Zero-point fluctuations in quantum fields give rise to observable forces between material bodies, the so-called Casimir forces. In these lectures I present the theory of the Casimir effect, primarily formulated in terms of Green's functions. There is an intimate relation between the Casimir effect and van der Waals forces. Applications to conductors and dielectric bodies of various shapes will be given for the cases of scalar, electromagnetic, and fermionic fields. The dimensional dependence of the effect will be described. Finally, we ask the question: Is there a connection between the Casimir effect and the phenomenon of sonoluminescence?
Abstract. The phenomena implied by the existence of quantum vacuum fluctuations, grouped under the title of the Casimir effect, are reviewed, with emphasis on new results discovered in the past four years. The Casimir force between parallel plates is rederived as the strong-coupling limit of δ-function potential planes. The role of surface divergences is clarified. A summary of effects relevant to measurements of the Casimir force between real materials is given, starting from a geometrical optics derivation of the Lifshitz formula, and including a rederivation of the Casimir-Polder forces. A great deal of attention is given to the recent controversy concerning temperature corrections to the Casimir force between real metal surfaces. A summary of new improvements to the proximity force approximation is given, followed by a synopsis of the current experimental situation. New results on Casimir self-stress are reported, again based on δ-function potentials. Progress in understanding divergences in the self-stress of dielectric bodies is described, in particular the status of a continuing calculation of the self-stress of a dielectric cylinder. Casimir effects for solitons, and the status of the so-called dynamical Casimir effect, are summarized. The possibilities of understanding dark energy, strongly constrained by both cosmological and terrestrial experiments, in terms of quantum fluctuations are discussed. Throughout, the centrality of quantum vacuum energy in fundamental physics in emphasized.
The finite-temperature Casimir free energy, entropy, and internal energy are considered anew for a conventional parallel-plate configuration, in the light of current discussions in the literature. In the case of an "ideal" metal, characterized by a refractive index equal to infinity for all frequencies, we recover, via a somewhat unconventional method, conventional results for the temperature dependence, meaning that the zero-frequency transverse electric mode contributes the same as the transverse magnetic mode. For a real metal, however, approximately obeying the Drude dispersive model at low frequencies, we find that the zero-frequency transverse electric mode does not contribute at all. This would appear to lead to an observable temperature dependence and a violation of the third law of thermodynamics. It had been suggested that the source of the difficulty was the behavior of the reflection coefficient for perpendicular polarization but we show that this is not the case. By introducing a simplified model for the Casimir interaction, consisting of two harmonic oscillators interacting via a third one, we illustrate the behavior of the transverse electric field. Numerical results are presented based on the refractive index for gold. A linear temperature correction to the Casimir force between parallel plates is indeed found which should be observable in room-temperature experiments, but this does not entail any thermodynamic inconsistency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.