Type 1 diabetes mellitus (T1DM) is an autoimmune disorder that affects an estimated 30 million people worldwide. It is characterized by the destruction of pancreatic β cells by the immune system, which leads to lifelong dependency on exogenous insulin and imposes an enormous burden on patients and health-care resources. T1DM is also associated with an increased risk of comorbidities, such as cardiovascular disease, retinopathy, and diabetic kidney disease (DKD), further contributing to the burden of this disease. Although T cells are largely considered to be responsible for β-cell destruction in T1DM, increasing evidence points towards a role for B cells in disease pathogenesis. B cell-depletion, for example, delays disease progression in patients with newly diagnosed T1DM. Loss of tolerance of islet antigen-reactive B cells occurs early in disease and numbers of pancreatic CD20 B cells correlate with β-cell loss. Although the importance of B cells in T1DM is increasingly apparent, exactly how these cells contribute to disease and its comorbidities, such as DKD, is not well understood. Here we discuss the role of B cells in the pathogenesis of T1DM and how these cells are activated during disease development. Finally, we speculate on how B cells might contribute to the development of DKD.
Type 1 diabetes (T1D) is an autoimmune disease characterized by loss of insulin producing beta cells and reliance on exogenous insulin for survival. T1D is one of the most common chronic diseases in childhood and the incidence is increasing, especially in children less than 5 years of age. In individuals with a genetic predisposition, an unidentified trigger initiates an abnormal immune response and the development of islet autoantibodies directed against proteins in insulin producing beta cells. There are currently four biochemical islet autoantibodies measured in the serum directed against insulin, glutamic decarboxylase, islet antigen 2, and zinc transporter 8. Development of islet autoantibodies occurs before clinical diagnosis of T1D, making T1D a predictable disease in an individual with 2 or more autoantibodies. Screening for islet autoantibodies is still predominantly done through research studies, but efforts are underway to screen the general population. The benefits of screening for islet autoantibodies include decreasing the incidence of diabetic ketoacidosis that can be life threatening, initiating insulin therapy sooner in the disease process, and evaluating safe and specific therapies in large randomized clinical intervention trials to delay or prevent progression to diabetes onset.
Objective Hypophosphatemia occurs with inadequate dietary intake, malabsorption, increased renal excretion, or shifts between intracellular and extracellular compartments. We noticed the common finding of amino-acid based elemental formula [EF] use in an unexpected number of cases of idiopathic hypophosphatemia occurring in infants and children evaluated for skeletal disease. We aimed to fully characterize the clinical profiles in these cases. Methods A retrospective chart review of children with unexplained hypophosphatemia was performed as cases accumulated from various centres in North America and Ireland. Data were analyzed to explore any relationships between feeding and biochemical or clinical features, effects of treatment, and to identify a potential mechanism. Results Fifty-one children were identified at 17 institutions with EF-associated hypophosphatemia. Most children had complex illnesses and had been solely fed Neocate® formula products for variable periods of time prior to presentation. Feeding methods varied. Hypophosphatemia was detected during evaluation of fractures or rickets. Increased alkaline phosphatase activity and appropriate renal conservation of phosphate were documented in nearly all cases. Skeletal radiographs demonstrated fractures, undermineralization, or rickets in 94% of the cases. Although the skeletal disease had often been attributed to underlying disease, most all improved with addition of supplemental phosphate or change to a different formula product. Conclusion The observed biochemical profiles indicated a deficient dietary supply or severe malabsorption of phosphate, despite adequate formula composition. When transition to an alternate formula was possible, biochemical status improved shortly after introduction to the alternate formula, with eventual improvement of skeletal abnormalities. These observations strongly implicate that bioavailability of formula phosphorus may be impaired in certain clinical settings. The widespread nature of the findings lead us to strongly recommend careful monitoring of mineral metabolism in children fed EF. Transition to alternative formula use or implementation of phosphate supplementation should be performed cautiously with as severe hypocalcemia may develop.
Objective To evaluate the association between bone mineral density (BMD), glycemic control (HbA1c) and celiac autoimmunity in children with type one diabetes (T1D) and in an appropriate control population. Study design BMD was assessed cross-sectionally in 252 children with T1D (123 positive for TG and 129 matched children who were negative for transglutaminase [TG]). Additionally, BMD was assessed in 141 children without diabetes who carried T1D-associated HLD-DR,DQ genotypes (71 positive for TG and 70 negative). Results Children with T1D who were positive for TG had significantly worse BMD L1-L4 z-score compared with children with T1D who were negative for TG (−0.45 ± 1.22 vs. 0.09 ± 1.10, p=0.0003). No differences in growth measures, urine N-telopeptides, vitamin D 25OH, ferritin, TSH or HbA1c were found. However, both higher HbA1c (β= −1.25 ± 0.85, p=0.0016) and TG (β= −0.13 ± 0.05, p = 0.0056) were significant and independent predictors of lower BMD in multivariate analyses. No differences in BMD or other variables measured were found between children without diabetes who were positive versus negative for TG. Conclusions The results suggest a synergistic effect of hyperglycemia and celiac autoimmunity on low BMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.