Solid cancers are composed of heterogeneous zones containing proliferating and quiescent cells. Despite considerable insight into the molecular mechanisms underlying aberrant cell cycle progression, there is limited understanding of the relationship between the cell cycle on the one side, and melanoma cell motility, invasion, and drug sensitivity on the other side. Utilizing the fluorescent ubiquitination-based cell cycle indicator (FUCCI) to longitudinally monitor proliferation and migration of melanoma cells in 3D culture and in vivo, we found that invading melanoma cells cycle actively, while G1-arrested cells showed decreased invasion. Melanoma cells in a hypoxic environment or treated with mitogen-activated protein kinase pathway inhibitors remained G1-arrested for extended periods of time, with proliferation and invasion resuming after re-exposure to a more favorable environment. We challenge the idea that the invasive and proliferative capacity of melanoma cells are mutually exclusive and further demonstrate that a reversibly G1-arrested subpopulation survives in the presence of targeted therapies.
Amino acids, especially leucine and glutamine, are important for tumor cell growth, survival and metabolism. A range of different transporters deliver each specific amino acid into cells, some of which are increased in cancer. These amino acids consequently activate the mTORC1 pathway and drive cell cycle progression. The leucine transporter LAT1/4F2hc heterodimer assembles as part of a large complex with the glutamine transporter ASCT2 to transport amino acids. In this study, we show that the expression of LAT1 and ASCT2 is significantly increased in human melanoma samples and is present in both BRAF WT (C8161 and WM852) and BRAF V600E mutant (1205Lu and 451Lu) melanoma cell lines. While inhibition of LAT1 by BCH did not suppress melanoma cell growth, the ASCT2 inhibitor BenSer significantly reduced both leucine and glutamine transport in melanoma cells, leading to inhibition of mTORC1 signaling. Cell proliferation and cell cycle progression were significantly reduced in the presence of BenSer in melanoma cells in 2D and 3D cell culture. This included reduced expression of the cell cycle regulators CDK1 and UBE2C. The importance of ASCT2 expression in melanoma was confirmed by shRNA knockdown, which inhibited glutamine uptake, mTORC1 signaling and cell proliferation. Taken together, our study demonstrates that ASCT2-mediated glutamine transport is a potential therapeutic target for both BRAF WT and BRAF V600E melanoma.
The human melanocortin-1 receptor (MC1R) is a G-protein coupled receptor involved in the regulation of pigmentation. Several MC1R variant alleles are associated with red hair, fair skin and increased skin cancer risk. We have performed a systematic functional analysis of nine common MC1R variants and correlated these results with the strength of the genetic association of each variant allele with pigmentation phenotypes. In vitro expression studies revealed that variant receptors with reduced cell surface expression, including V60L, D84E, R151C, I155T, R160W and R163Q, showed a corresponding impairment in cAMP coupling. The R142H and D294H variants demonstrated normal cell surface expression, but had reduced functional responses, indicating that altered G-protein coupling may be responsible for this loss of function. The V92M variant cAMP activation was equal to or higher than that for wild-type MC1R. In co-expression studies, the D84E, R151C, I155T and R160W variants showed a dominant negative effect on wild-type receptor cell surface expression, which was reflected in a decreased ability to elevate intracellular cAMP levels. The D294H variant also demonstrated a dominant negative effect on wild-type MC1R cAMP signalling, but had no effect on wild-type surface expression. Importantly, comparison of the in vitro receptor characteristics with skin and hair colour data of individuals both homozygous and heterozygous for MC1R variant alleles revealed parallels between variant MC1R cell surface expression, functional ability, dominant negative activity and their effects on human pigmentation. These findings show the first direct correlations between variant MC1R biochemical properties and pigmentation phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.