Detecting animals by identifying their DNA in water is a valuable tool for locating and monitoring species that are difficult to detect through other survey techniques. We developed a test for detecting the endangered Gouldian finch Erythrura gouldiae, a small bird endemic to northern Australia. Only 1 previous study has reported an environmental DNA (eDNA) test that unequivocally identifies a bird species using the water bodies from which they drink. In controlled aviary trials with a pair of Gouldian finches, first detection in 200 ml of water occurred after as little as 6 h, but the detection rate was higher at 30 h. DNA persisted in water exposed to the sun for <12 h and in the shade for 12 h. In trials with 55 finches, persistence was up to 144 h. The eDNA test for finches and the Gouldian finch-specific test were positive for waterholes where Gouldian and other finch species were observed each morning over 3 d. Importantly, where no Gouldian finches were observed for up to 72 h prior to water sampling, the Gouldian test was negative. Where other species of finch but no Gouldian finch were observed and counted, the finch test was positive, but the Gouldian finch test was negative. This approach could be developed for broadscale monitoring of this endangered species, and potentially applied to a much broader range of terrestrial species that shed DNA into water bodies.
Functional roles of the rich microbiota of the skin are not fully understood, but include protection against microbial diseases and other environmental challenges. In experimental studies, we show that reducing the microbiota from cane toad ( Rhinella marina ) skin by gently wiping with absorptive gauze resulted in threefold higher rates of infection by lungworms ( Rhabdias pseudosphaerocephala ) following standardised exposure to infective skin-penetrating larvae. Higher concentrations of microbial DNA were associated with lower rates of lungworm entry. Our data suggest that microbial activity on the anuran skin comprises an important line of defence against attack by macroparasites as well as by fungi and other microbes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.