Nowadays, tropical forest landscapes are commonly characterized by a multitude of interacting institutions and actors with competing land-use interests. In these settings, indigenous and tribal communities are often marginalized in landscape-level decision making. Inclusive landscape governance inherently integrates diverse knowledge systems, including those of indigenous and tribal communities. Increasingly, geo-information tools are recognized as appropriate tools to integrate diverse interests and legitimize the voices, values, and knowledge of indigenous and tribal communities in landscape governance. In this paper, we present the contribution of the integrated application of three participatory geo-information tools to inclusive landscape governance in the Upper Suriname River Basin in Suriname: (i) Participatory 3-Dimensional Modelling, (ii) the Trade-off! game, and (iii) participatory scenario planning. The participatory 3-dimensional modelling enabled easy participation of community members, documentation of traditional, tacit knowledge and social learning. The Trade-off! game stimulated capacity building and understanding of land-use trade-offs. The participatory scenario planning exercise helped landscape actors to reflect on their own and others’ desired futures while building consensus. Our results emphasize the importance of systematically considering tool attributes and key factors, such as facilitation, for participatory geo-information tools to be optimally used and fit with local contexts. The results also show how combining the tools helped to build momentum and led to diverse yet complementary insights, thereby demonstrating the benefits of integrating multiple tools to address inclusive landscape governance issues.
This paper analyses built‐up area expansion and socioeconomic segregation within the Greater Paramaribo Region, Suriname. Built‐up expansion between 1987 and 2015 was assessed via time‐series analysis of Landsat images. By identifying visible spatial residential characteristics in Google Earth© images, the residential built‐up area was differentiated into rich, middle, middle to low, and poor residences, signifying different socioeconomic groups. Results show that the built‐up expansion of the region is primarily controlled by the distance to the previously built‐up area, city centre, and roads, as well as land price. The observed expansion mainly consisted of middle and middle to low residences. Dissimilarity indices demonstrate an increasing socioeconomic segregation, especially between rich and poor. A business‐as‐usual model simulation for 2030 indicates that this segregation is likely to remain.
This work was undertaken to develop a low-cost but reliable assessment method for agricultural water requirements in semi-arid locations based on remote sensing data/techniques. In semi-arid locations, water resources are often limited, and long-term water consumption may exceed the natural replenishment rates of groundwater reservoirs. Sustainable land management in these locations must include tools that facilitate assessment of the impact of potential future land use changes. Agricultural practices in the Boufakrane River watershed (Morocco) were used as a case study application. Land use practices were mapped at the thematic resolution of individual crops, using a total of 13 images generated from the Sentinel-2 satellites. Using a supervised classification scheme, crop types were identified as cereals, other crops followed by cereals, vegetables, olive trees, and fruit trees. Two classifiers were used, namely Support vector machine (SVM) and Random forest (RF). A validation of the classified parcels showed a high overall accuracy of 89.76% for SVM and 84.03% for RF. Results showed that cereal is the most represented species, covering 8870.43 ha and representing 52.42% of the total area, followed by olive trees with 4323.18 ha and a coverage rate of 25%. Vegetables and other crops followed by cereals cover 1530.06 ha and 1661.45 ha, respectively, representing 9.4% and 9.8% of the total area. In the last rank, fruit trees occupy only 3.67% of the total area, with 621.06 ha. The Food and Agriculture Organization (FAO) free software was used to overlay satellite data images with those of climate for agricultural water resources management in the region. This process facilitated estimations of irrigation water requirements for all crop types, taking into account total potential evapotranspiration, effective rainfall, and irrigation water requirements. Results showed that olive trees, fruit trees, and other crops followed by cereals are the most water demanding, with irrigation requirements exceeding 500 mm. The irrigation requirements of cereals and vegetables are lower than those of other classes, with amounts of 300 mm and 150 mm, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.