N-Methyl-D-aspartate (NMDA) receptor dysfunction has been linked to several neuropsychiatric disorders, including Alzheimer’s disease, epilepsy, drug addiction, and schizophrenia. A radioligand that could be used with PET to image and quantify human brain NMDA receptors in the activated “open channel” state would be useful for research on such disorders and for the development of novel therapies. To date, no radioligands have shown well-validated efficacy for imaging NMDA receptors in human subjects. In order to discover improved radioligands for PET imaging, we explored structure–affinity relationships in N′-3-(trifluoromethyl)phenyl derivatives of N-aryl-N′-methylguanidines, seeking high affinity and moderate lipophilicity, plus necessary amenability for labeling with a positron-emitter, either carbon-11 or fluorine-18. Among a diverse set of 80 prepared N′-3-(trifluoromethyl)phenyl derivatives, four of these compounds (13, 19, 20, and 36) displayed desirable low nanomolar affinity for inhibition of [3H](+)-MK801 at the PCP binding site and are of interest for candidate PET radioligand development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.