The human gut is heavily colonized by a community of microbiota, primarily bacteria, that exists in a symbiotic relationship with the host and plays a critical role in maintaining host homeostasis. The consumption of a high-fat (HF) diet has been shown to induce gut dysbiosis and reduce intestinal integrity. Recent studies have revealed that dysbiosis contributes to the progression of cardiovascular diseases (CVDs) by promoting two major CVD risk factors—atherosclerosis and hypertension. Imbalances in host–microbial interaction impair homeostatic mechanisms that regulate health and can activate multiple pathways leading to CVD risk factor progression. Dysbiosis has been implicated in the development of atherosclerosis through metabolism-independent and metabolite-dependent pathways. This review will illustrate how these pathways contribute to the various stages of atherosclerotic plaque progression. In addition, dysbiosis can promote hypertension through vascular fibrosis and an alteration of vascular tone. As CVD is the number one cause of death globally, investigating the gut microbiota as a locus of intervention presents a novel and clinically relevant avenue for future research, with vast therapeutic potential.
We have created a prototype scoring system that can be hosted online to assist GPs with their referrals with a sensitivity of 31% and specificity of 92%. While we acknowledge that there are several limitations to our model, we believe we have created a novel preliminary scoring system that has the potential to be improved dramatically with further data and be very helpful for GPs in a long run.
BackgroundTypical enteropathogenic Escherichia coli (t-EPEC) are known to cause diarrhea in children but it is uncertain whether atypical EPEC (a-EPEC) do, since a-EPEC lack the bundle-forming pilus (bfp) gene that encodes a key adherence factor in t-EPEC. In culture-based studies of a-EPEC, the presence of another adherence factor, called EHEC factor for adherence/lymphocyte activation inhibitor (efa1/lifA), was strongly associated with diarrhea. Since a-EPEC culture is not feasible in clinical laboratories, we designed an efa1/lifA quantitative PCR assay and examined whether the presence of efa1/lifA was associated with higher a-EPEC bacterial loads in pediatric diarrheal stool samples.MethodsFecal samples from children with diarrhea were tested by qPCR for EPEC (presence of eae gene) and for shiga toxin genes to exclude enterohemorrhagic E. coli, which also contain the eae gene. EPEC containing samples were then tested for the bundle-forming pilus gene found in t-EPEC and efa1/lifA. The eae gene quantity in efa1/lifA-positive and negative samples was compared.ResultsThirty-nine of 320 (12%) fecal samples tested positive for EPEC and 38/39 (97%) contained a-EPEC. The efa1/lifA gene was detected in 16/38 (42%) a-EPEC samples. The median eae concentration for efa1/lifA positive samples was significantly higher than for efa1/lifA negative samples (median 16,745 vs. 1183 copies/µL, respectively, p = 0.006).ConclusionsAtypical enteropathogenic E. coli-positive diarrheal stool samples containing the efa1/lifA gene had significantly higher bacterial loads than samples lacking this gene. This supports the idea that efa1/lifA contributes to diarrheal pathogenesis and suggests that, in EPEC-positive samples, efa/lifA may be a useful additional molecular biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.