Dysbiosis refers to a reduction in microbial diversity, combined with a loss of beneficial taxa, and an increase in pathogenic microorganisms. Dysbiosis of the intestinal microbiota can have a substantial effect on the nervous and immune systems, contributing to the onset of several inflammatory diseases. Epidemiological studies provided insight in how changes in the living environment have contributed to an overall loss of diversity and key taxa in the gut microbiome, coinciding with increased reports of atopy and allergic diseases. The gut microbiome begins development at birth, with major transition periods occurring around the commencement of breastfeeding, and the introduction of solid foods. As such, the development of the gut microbiome remains highly plastic and easily influenced by environmental factors until around three years of age. Developing a diverse and rich gut microbiome during this sensitive period is crucial to setting up a stable gut microbiome into adulthood and to prevent gut dysbiosis. Currently, the delivery route, antibiotic exposure, and diet are the best studied drivers of gut microbiome development, as well as risk factors of gut dysbiosis during infancy. This review focuses on recent evidence regarding key environmental factors that contribute to promoting gut dysbiosis.
Background and objectives Because of its beneficial off‐target effects against non‐mycobacterial infectious diseases, bacillus Calmette–Guérin (BCG) vaccination might be an accessible early intervention to boost protection against novel pathogens. Multiple epidemiological studies and randomised controlled trials (RCTs) are investigating the protective effect of BCG against coronavirus disease 2019 (COVID‐19). Using samples from participants in a placebo‐controlled RCT aiming to determine whether BCG vaccination reduces the incidence and severity of COVID‐19, we investigated the immunomodulatory effects of BCG on in vitro immune responses to SARS‐CoV‐2. Methods This study used peripheral blood taken from participants in the multicentre RCT and BCG vaccination to reduce the impact of COVID‐19 on healthcare workers (BRACE trial). The whole blood taken from BRACE trial participants was stimulated with γ‐irradiated SARS‐CoV‐2‐infected or mock‐infected Vero cell supernatant. Cytokine responses were measured by multiplex cytokine analysis, and single‐cell immunophenotyping was made by flow cytometry. Results BCG vaccination, but not placebo vaccination, reduced SARS‐CoV‐2‐induced secretion of cytokines known to be associated with severe COVID‐19, including IL‐6, TNF‐α and IL‐10. In addition, BCG vaccination promoted an effector memory phenotype in both CD4+ and CD8+ T cells, and an activation of eosinophils in response to SARS‐CoV‐2. Conclusions The immunomodulatory signature of BCG’s off‐target effects on SARS‐CoV‐2 is consistent with a protective immune response against severe COVID‐19.
The regulation of innate immunity is substantially more ‘plastic’ than previously appreciated. Innate immune memory (manifested through trained immunity and tolerance) is a recently described epigenetic phenomenon that is a model example, with broad implications for infectious disease, allergy and autoimmunity. Training the innate immune system to combat infections and temper inappropriate responses in non-communicable diseases will likely be an area of intense research. Innate immunity is influenced by short chain fatty acids, which are the natural products of digestion by the intestinal microbiota that possess inherent histone deacetylase inhibitory properties. It therefore stands to reason that a healthy gut microbiome may well influence mucosal and systemic trained immunity via short chain fatty acids. There is a lack of data on this specific topic, and we discuss potential relationships based on available and preliminary evidence. Understanding the link between intestinal microbiome composition, capacity for short chain fatty acid production and downstream effects on innate immune memory in early life will have important implications for host immunobiology. In this review we explore the intersection between the gut microbiota, short chain fatty acids and epigenetic regulation of innate immunity with a focus on early life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.