Abstract-Looping is a vital event during early cardiac morphogenesis, as the initially straight heart tube bends and twists into a curved tube, laying out the basic pattern of the future fourchambered heart. Despite intensive study for almost a century, the biophysical mechanisms that drive this process are not well understood. To explore a recently proposed hypothesis for looping, we constructed a finite element model for the embryonic chick heart during the first phase of looping, called c-looping. The model includes the main structures of the early heart (heart tube, omphalomesenteric veins, and dorsal mesocardium), and the analysis features realistic three-dimensional geometry, nonlinear passive and active material properties, and anisotropic growth. As per our earlier hypothesis for c-looping, actin-based morphogenetic processes (active cell shape change, cytoskeletal contraction, and cell migration) are simulated in specific regions of the model. The model correctly predicts the initial gross morphological shape changes of the heart, as well as distributions of morphogenetic stresses and strains measured in embryonic chick hearts. The model was tested further in studies that perturbed normal cardiac morphogenesis. The model, taken together with the new experimental data, supports our hypothesis for the mechanisms that drive early looping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.