Abstract-Increasing evidence suggests that preeclampsia is associated with complement dysregulation. The origin of complement dysregulation in preeclampsia is unknown, and further unraveling this mechanism could provide both diagnostic tools and therapeutic targets. Because the placenta is believed to play a crucial role in the pathogenesis of preeclampsia, we investigated placentas from preeclamptic women (n=28) and controls (n=44) for the presence of complement activation products. Immunohistochemistry was performed for C1q, mannose-binding lectin, properdin, and C4d. Staining patterns were related to pregnancy outcome. Possible causes of complement activation were investigated, including the presence of immune deposits at the syncytiotrophoblast and changes in the placental mRNA expression of complement regulatory proteins. C4d was rarely present in placentas from healthy controls (3%), whereas it was observed in 50% of placentas obtained from preeclamptic women (P=0.001). In these placentas, C4d was observed in a focal (9/14) or diffuse (5/14) staining pattern at the syncytiotrophoblast. With respect to C1q, mannose-binding lectin, and properdin, no differences were observed between cases and controls. In preeclamptic women, diffuse placental C4d was associated with a significantly lower gestational age at delivery. Furthermore, the mRNA expression of the complement regulatory proteins CD55 and CD59 was significantly upregulated in preeclampsia. In conclusion, there is evidence for increased classical pathway activation and altered complement regulation in preeclampsia. The relation between C4d and lower gestational age at birth suggests that the extent of complement dysregulation is associated with the severity of preeclampsia. Inhibiting excessive complement activation may be a promising therapeutic approach in the management of preeclampsia.
The reported prevalence of diabetic nephropathy (DN) among patients with diabetes varies widely. Most studies use the presence of microalbuminuria for clinical onset of DN in the absence of a histopathologic evaluation. In this autopsy study, we collected and analyzed data from a cohort of patients with type 1 or 2 diabetes and determined the prevalence of histologically proven DN in patients with or without clinical manifestations of renal disease. We also examined the distribution among histopathologic classes with respect to clinical parameters. Renal tissue specimens from autopsies and clinical data were collected retrospectively from 168 patients with diabetes. The histopathologic classification for DN was scored as were interstitial and vascular parameters. In this cohort, 106 of 168 patients had histopathologic changes in the kidney characteristic of DN. Twenty of the 106 histologically proven DN cases did not present with DN-associated clinical manifestations within their lifetime. Glomerular and interstitial lesions were associated with renal function but not with proteinuria. We also found that underdiagnosed DN may encompass all histopathologic classes except the sclerotic class. Thus, the prevalence of histologically proven DN was higher than previously appreciated, and we found a relatively high proportion of DN that was clinically underdiagnosed yet histologically proven, suggesting that DN lesions may develop before the onset of clinical findings.
Histidine-containing dipeptides like carnosine and anserine have protective functions in both health and disease. Animal studies suggest that carnosine can be metabolized within the kidney. The goal of this study was to obtain evidence of carnosine metabolism in the human kidney and to provide insight with regards to diabetic nephropathy. Expression, distribution, and localization of carnosinase-1 (CNDP1), carnosine synthase (CARNS), and taurine transporters (TauT) were measured in human kidneys. CNDP1 and CARNS activities were measured in vitro. CNDP1 and CARNS were located primarily in distal and proximal tubules, respectively. Specifically, CNDP1 levels were high in tubular cells and podocytes (20.3 ± 3.4 and 15 ± 3.2 ng/mg, respectively) and considerably lower in endothelial cells (0.5 ± 0.1 ng/mg). CNDP1 expression was correlated with the degradation of carnosine and anserine (r = 0.88 and 0.81, respectively). Anserine and carnosine were also detectable by HPLC in the renal cortex. Finally, TauT mRNA and protein were found in all renal epithelial cells. In diabetic patients, CNDP1 seemed to be reallocated to proximal tubules. We report compelling evidence that the kidney has an intrinsic capacity to metabolize carnosine. Both CNDP1 and CARNS are expressed in glomeruli and tubular cells. Carnosine-synthesizing and carnosine-hydrolyzing enzymes are localized in distinct compartments in the nephron and increased CNDP1 levels suggest a higher CNDP1 activity in diabetic kidneys.Electronic supplementary materialThe online version of this article (doi:10.1007/s00726-015-2045-7) contains supplementary material, which is available to authorized users.
In total, 1 in 1000 individuals carries a germline mutation in the PKD1 or PKD2 gene, which leads to autosomal dominant polycystic kidney disease (ADPKD). Cysts can form early in life and progressively increase in number and size during adulthood. Extensive research has led to the presumption that somatic inactivation of the remaining allele initiates the formation of cysts, and the progression is further accelerated by renal injury. However, this hypothesis is primarily on the basis of animal studies, in which the gene is inactivated simultaneously in large percentages of kidney cells. To mimic human ADPKD in mice more precisely, we reduced the percentage of Pkd1-deficient kidney cells to 8%. Notably, no pathologic changes occurred for 6 months after Pkd1 deletion, and additional renal injury increased the likelihood of cyst formation but never triggered rapid PKD. In mildly affected mice, cysts were not randomly distributed throughout the kidney but formed in clusters, which could be explained by increased PKD-related signaling in not only cystic epithelial cells but also, healthy-appearing tubules near cysts. In the majority of mice, these changes preceded a rapid and massive onset of severe PKD that was remarkably similar to human ADPKD. Our data suggest that initial cysts are the principal trigger for a snowball effect driving the formation of new cysts, leading to the progression of severe PKD. In addition, this approach is a suitable model for mimicking human ADPKD and can be used for preclinical testing.
Autosomal dominant polycystic kidney disease (ADPKD), characterized by the formation of numerous kidney cysts, is caused by PKD1 or PKD2 mutations and affects 0.1% of the population. Although recent clinical studies indicate that reduction of cAMP levels slows progression of PKD, this finding has not led to an established safe and effective therapy for patients, indicating the need to find new therapeutic targets. The role of TGF-β in PKD is not clearly understood, but nuclear accumulation of phosphorylated SMAD2/3 in cyst-lining cells suggests the involvement of TGF-β signaling in this disease. In this study, we ablated the TGF-β type 1 receptor (also termed activin receptor-like kinase 5) in renal epithelial cells of PKD mice, which had little to no effect on the expression of SMAD2/3 target genes or the progression of PKD. Therefore, we investigated whether alternative TGF-β superfamily ligands account for SMAD2/3 activation in cystic epithelial cells. Activins are members of the TGF-β superfamily and drive SMAD2/3 phosphorylation via activin receptors, but activins have not been studied in the context of PKD. Mice with PKD had increased expression of activin ligands, even at early stages of disease. In addition, treatment with a soluble activin receptor IIB fusion (sActRIIB-Fc) protein, which acts as a soluble trap to sequester activin ligands, effectively inhibited cyst formation in three distinct mouse models of PKD. These data point to activin signaling as a key pathway in PKD and a promising target for therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.