The synthesis and characterization of several Cr(III) complexes of the constrained macrocyclic ligand 1,4-C(2)-cyclam = 1,4,8,11-tetraazabicyclo[10.2.2]hexadecane is reported. The ligand appears to form only trans complexes, and the structure of trans-[Cr(1,4-C(2)-cyclam)Cl(2)]PF(6) is presented. The constraint imposed by the additional C(2) linkage distorts the bond angles significantly away from the ideal values of 90 and 180 degrees. The effect of the distortion is to enhance the aquation rate of trans-[Cr(1,4-C(2)-cyclam)Cl(2)](+) (k(obs) for trans-[Cr(1,4-C(2)-cyclam)(H(2)O)(2)](3+) formation = 6.5 x 10(-)(2) s(-)(1), 0.01M HNO(3), 25 degrees C) by over 5 orders of magnitude relative to trans-[Cr(cyclam)Cl(2)](+). The complexes trans-[Cr(1,4-C(2)-cyclam)Cl(2)](+) and trans-[Cr(1,4-C(2)-cyclam)(CN)(2)](+) are found to have extinction coefficients four to five times higher than their cyclam analogues, owed to the lack of centrosymmetry caused by the steric constraint. The trans-[Cr(1,4-C(2)-cyclam)(CN)(2)](+) complex is a very weak emitter in aqueous solution with a broad room-temperature emission centered at 735 nm (tau = 0.24 micros). Extended photolysis (350 nm, 15 h) of trans-[Cr(1,4-C(2)-cyclam)(CN)(2)](+) in aqueous solution results in CN(-) ligand loss. This is in stark contrast to its unconstrained cyclam analogue, which is photoinert and has a room-temperature emission lifetime of 335 micros.
The synthesis and characterization of several Cr(III) complexes of the constrained macrocyclic ligand 1,11-C3-cyclam (1,4,8,11-tetraazabicyclo[9.3.3]heptadecane) is reported. Only trans complexes are formed, and the structure of trans-[Cr(1,11-C3-cyclam)Cl2]PF6 is presented. The chemical and photophysical behavior of the 1,11-C3-cyclam complexes are compared with those of the corresponding cyclam (1,4,8,11 tetraazacyclotetradecane) and 1,4-C2-cyclam (1,4,8,11-tetraazabicyclo[10.2.2]hexadecane) complexes. The aquation rate of trans-[Cr(1,11-C3-cyclam)Cl2]+ is similar to that of the corresponding 1,4-C2-cyclam complex and is more than 5 orders of magnitude faster than the cyclam counterpart. A monotonic increase in the extinction coefficient is observed on going from the cyclam complexes to the 1,11-C3-cyclam complexes to the 1,4-C2-cyclam complexes, and this is related to the degree of centrosymmetry in each complex. The trans-[Cr(1,11-C3-cyclam)(CN)2]+ complex is a weak emitter in aqueous solution with a room-temperature emission maximum at 724 nm (tau=23 micros). Like the corresponding 1,4-C2-cyclam complex (tau=0.24 micros), the 1,11-C3-cyclam complex shows no deuterium-isotope effect in room-temperature solution. This is in marked contrast to the corresponding cyclam complex which has an emission lifetime of 335 micros and a significant deuterium isotope effect in room-temperature solution. Low temperature (77K) data are also presented in an attempt to understand the differences in photophysical behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.