ABSTRACT. Deriving glacier outlines from satellite data has become increasingly popular in the past decade. In particular when glacier outlines are used as a base for change assessment, it is important to know how accurate they are. Calculating the accuracy correctly is challenging, as appropriate reference data (e.g. from higher-resolution sensors) are seldom available. Moreover, after the required manual correction of the raw outlines (e.g. for debris cover), such a comparison would only reveal the accuracy of the analyst rather than of the algorithm applied. Here we compare outlines for clean and debriscovered glaciers, as derived from single and multiple digitizing by different or the same analysts on very high-(1 m) and medium-resolution (30 m) remote-sensing data, against each other and to glacier outlines derived from automated classification of Landsat Thematic Mapper data. Results show a high variability in the interpretation of debris-covered glacier parts, largely independent of the spatial resolution (area differences were up to 30%), and an overall good agreement for clean ice with sufficient contrast to the surrounding terrain (differences $5%). The differences of the automatically derived outlines from a reference value are as small as the standard deviation of the manual digitizations from several analysts. Based on these results, we conclude that automated mapping of clean ice is preferable to manual digitization and recommend using the latter method only for required corrections of incorrectly mapped glacier parts (e.g. debris cover, shadow).
The most practical way to get spatially broad and continuous measurements of the surface temperature in the data-sparse cryosphere is by satellite remote sensing. The uncertainties in satellite-derived LSTs must be understood to develop internally-consistent decade-scale land surface temperature (LST) records needed for climate studies. In this work we assess satellite-derived "clear-sky" LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and LSTs derived from the Enhanced Thematic Mapper Plus (ETM+) over snow and ice on Greenland. When possible, we compare satellite-derived LSTs with in-situ air temperature observations from Greenland Climate Network (GC-Net) automatic weather stations (AWS). We find that MODIS, ASTER and ETM+ provide reliable and consistent LSTs under clear-sky conditions and relatively-flat terrain over snow and ice targets over a range of temperatures from −40 to 0°C. The satellite-derived LSTs agree within a relative RMS uncertainty of~0.5°C. The good agreement among the LSTs derived from the various satellite instruments is especially notable since different spectral channels and different retrieval algorithms are used to calculate LST from the raw satellite data. The AWS record in-situ data at a "point" while the satellite instruments record data over an area varying in size from: 57 × 57 m (ETM+), 90 × 90 m (ASTER), or to 1 × 1 km (MODIS). Surface topography and other factors contribute to variability of LST within a pixel, thus the AWS measurements may not be representative of the LST of the pixel. Without more information on the local spatial patterns of LST, the AWS LST cannot be considered valid ground truth for the satellite measurements, with RMS uncertainty~2°C. Despite the relatively large AWS-derived uncertainty, we find LST data are characterized by high accuracy but have uncertain absolute precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.