The purpose of this investigation was to empirically evaluate a sexual assault prevention program. Of the 360 female college students who participated in the investigation, 181 students were in the treatment group and 165 students were in the control group. Although the program was not effective in decreasing the incidence of sexual assault for women with a sexual assault history, it was effective in decreasing the incidence of sexual assault for women without a sexual assault history. The program also led to a decrease in dating behaviors found to be associated with acquaintance rape and an increase in knowledge about sexual assault for the treatment group. The implications of these results for future preventive efforts are discussed.
While it is known that nitric oxide (NO) is an important modulator of tone in the hypertensive pulmonary circulation, the roles of cyclic 3 Ј -5 Ј -guanosine monophosphate (cGMP) and cGMP-phosphodiesterase (PDE) are uncertain. We found that isolated lung perfusate levels of cGMP were over ninefold elevated in hypertensive vs. normotensive control rats. 98-100% of lung cGMP hydrolytic activity was cGMP-specific PDE5, with no significant decrease in PDE activity in hypertensive lungs, suggesting that the elevation in cGMP was due to accelerated production rather than reduced degradation. In pulmonary hypertensive rat lungs, in vitro, cGMP-PDE inhibition by E4021[1-{6-chloro-4-(3,4-methylbenzyl) amino-quinazolin-2-yl}piperdine-4-carboxylate], increased perfusate cGMP threefold, reduced hypoxic vasoconstriction by 58 Ϯ 2%, and reduced baseline pulmonary artery pressure by 37 Ϯ 5%. In conscious, pulmonary hypertensive rats, intravenous administration of E4021 reduced hypoxic vasoconstriction by 68 Ϯ 8%, pulmonary artery pressure by 12.6 Ϯ 3.7% and total pulmonary resistance by 13.1 Ϯ 6.4%, with no significant effect on cardiac output, systemic pressure, and resistance.
An experimental ovine fetal model for perinatal pulmonary hypertension of the neonate (PPHN) was characterized by altered pulmonary vasoreactivity and structure. Because past studies had suggested impaired nitric oxide-cGMP cascade in this experimental model, we hypothesized that elevated phosphodiesterase (PDE) activity may contribute to altered vascular reactivity and structure in experimental PPHN. Therefore, we studied the effects of the PDE inhibitors zaprinast and dipyridamole on fetal pulmonary vascular resistance and PDE5 activity, protein, mRNA, and localization in normal and pulmonary hypertensive fetal lambs. Infusion of dipyridamole and zaprinast lowered pulmonary vascular resistance by 55 and 35%, respectively, in hypertensive animals. In comparison with control animals, lung cGMP PDE activity was elevated in hypertensive fetal lambs (150%). Increased PDE5 activity was not associated with either an increased PDE5 protein or mRNA level. Immunocytochemistry demonstrated that PDE5 was localized to vascular smooth muscle. We concluded that PDE5 activity was increased in experimental PPHN, possibly by posttranslational phosphorylation. We speculated that these increases in cGMP PDE activity contributed to altered pulmonary vasoreactivity in experimental perinatal pulmonary hypertension.
During transitional circulation, the pulmonary vascular bed undergoes a rapid and profound reduction in both tone and vascular smooth-muscle (VSM) content. 3',5'-Guanylate cyclic monophosphate (cGMP) is a crucial mediator in the regulation of pulmonary vascular resistance (PVR) and VSM proliferation. Hydrolysis of cGMP is achieved predominately by cGMP-specific phosphodiesterases (PDEs). Among the cGMP-specific PDEs, PDE5 is quantitatively prevalent in lung tissue. We have investigated the levels of pulmonary PDE5 enzymatic activity, protein, and messenger RNA (mRNA) in ovine and mouse lung during perinatal development. We report that within 1 h following birth, PDE5 activity, protein, and mRNA levels decrease in both species, in a manner that correlates with known decreases in PVR in early transition. However, from 4 to 7 d following birth, a secondary increase in PDE5 activity, protein, and mRNA occurs in both ovine and mouse lung, suggesting a complex regulation of PVR and VSM proliferation in late perinatal development. Our data imply that PDE5 may be an important mediator in the regulation of PVR in normal and possibly in pathologic states, and may ultimately provide a basis for PDE5 inhibitors as a treatment for pulmonary hypertension.
The principal hemodynamic effect of propofol in children with congenital heart defects is a decrease in systemic vascular resistance. In children with cardiac shunt, this results in a decrease in the ratio of pulmonary to systemic blood flow, and it can lead to arterial desaturation in patients with cyanotic heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.