The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank among the toughest known biomaterials. The large number of silk threads composing a web suggests that aerodynamic dissipation may also play an important role in stopping prey. Here, we quantify energy dissipation in orb webs spun by diverse species of spiders using data derived from high-speed videos of web deformation under prey impact. By integrating video data with material testing of silks, we compare the relative contributions of radial silk, the capture spiral and aerodynamic dissipation. Radial silk dominated energy absorption in all webs, with the potential to account for approximately 100 per cent of the work of stopping prey in larger webs. The most generous estimates for the roles of capture spirals and aerodynamic dissipation show that they rarely contribute more than 30 per cent and 10 per cent of the total work of stopping prey, respectively, and then only for smaller orb webs. The reliance of spider orb webs upon internal energy absorption by radial threads for prey capture suggests that the material properties of the capture spirals are largely unconstrained by the selective pressures of stopping prey and can instead evolve freely in response to alternative functional constraints such as adhering to prey.
SUMMARYSpiders in the Orbiculariae spin orb webs that dissipate the mechanical energy of their flying prey, bringing the insects to rest and retaining them long enough for the spider to attack and subdue their meals. Small prey are easily stopped by webs but provide little energetic gain. While larger prey offer substantial nourishment, they are also challenging to capture and can damage the web if they escape. We therefore hypothesized that spider orb webs exhibit properties that improve their probability of stopping larger insects while minimizing damage when the mechanical energy of those prey exceeds the web's capacity. Large insects are typically both heavier and faster flying than smaller prey, but speed plays a disproportionate role in determining total kinetic energy, so we predicted that orb webs may dissipate energy more effectively under faster impacts, independent of kinetic energy per se. We used high-speed video to visualize the impact of wooden pellets fired into orb webs to simulate prey strikes and tested how capture probability varied as a function of pellet size and speed. Capture probability was virtually nil above speeds of 3ms -1 . However, successful captures do not directly measure the maximum possible energy dissipation by orb webs because these events include lower-energy impacts that may not significantly challenge orb web performance. Therefore, we also compared the total kinetic energy removed from projectiles that escaped orb webs by breaking through the silk, asking whether more energy was removed at faster speeds. Over a range of speeds relevant to insect flight, the amount of energy absorbed by orb webs increases with the speed of prey (i.e. the rates at which webs are stretched). Orb webs therefore respond to faster -and hence higher kinetic energy -prey with better performance, suggesting adaptation to capture larger and faster flying insect prey. This speed-dependent toughness of a complex structure suggests the utility of the intrinsic toughness of spider silk and/or features of the macro-design of webs for high-velocity industrial or military applications, such as ballistic energy absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.