Social living goes hand in hand with communication, but the details of this relationship are rarely simple. Complex communication may be described by attributes as diverse as a species' entire repertoire, signallers' individualistic signatures, or complex acoustic phenomena within single calls. Similarly, attributes of social complexity are diverse and may include group size, social role diversity, or networks of interactions and relationships. How these different attributes of social and communicative complexity co-evolve is an active question in behavioural ecology. Sciurid rodents (ground squirrels, prairie dogs and marmots) provide an excellent model system for studying these questions. Sciurid studies have found that demographic role complexity predicts alarm call repertoire size, while social group size predicts alarm call individuality. Along with other taxa, sciurids reveal an important insight: different attributes of sociality are linked to different attributes of communication. By breaking social and communicative complexity down to different attributes, focused studies can better untangle the underlying evolutionary relationships and move us closer to a comprehensive theory of how sociality and communication evolve.
Discriminating among individuals is a critical social behavior in humans and many other animals and is often required for offspring and mate recognition, territorial or coalitional behaviors, signaler reliability assessment, and social hierarchies. Being individually discriminated is more difficult in larger groups, and large group size may select for increased individuality-signature information-in social signals, to facilitate discrimination. Small-scale studies suggest that more social species have greater individuality in their social signals, such as contact calls. However, this relationship has not been evaluated in a broader-scale evolutionary context or in social signals other than contact calls. It is not yet known whether social group size may be viewed as a general evolutionary driver of individuality. Here we show a strong positive evolutionary link between social group size in sciurid rodents and individuality in their social alarm calls. Social group size explained over 88% of the variation in vocal individuality in phylogenetic independent contrasts. Species living in larger groups, but not in more complex groups, had more signature information in their calls. Our results suggest that social group size may promote the evolution of individual signatures and that the sociality-individuality relationship may be a general phenomenon in nature.
Recent developments in ecological statistics have reached behavioral ecology, and an increasing number of studies now apply analytical tools that incorporate alternatives to the conventional null hypothesis testing based on significance levels. However, these approaches continue to receive mixed support in our field. Because our statistical choices can influence research design and the interpretation of data, there is a compelling case for reaching consensus on statistical philosophy and practice. Here, we provide a brief overview of the recently proposed approaches and open an online forum for future discussion (https://bestat.ecoinformatics .org/). From the perspective of practicing behavioral ecologists relying on either correlative or experimental data, we review the most relevant features of information theoretic approaches, Bayesian inference, and effect size statistics. We also discuss concerns about data quality, missing data, and repeatability. We emphasize the necessity of moving away from a heavy reliance on statistical significance while focusing attention on biological relevance and effect sizes, with the recognition that uncertainty is an inherent feature of biological data. Furthermore, we point to the importance of integrating previous knowledge in the current analysis, for which novel approaches offer a variety of tools. We note, however, that the drawbacks and benefits of these approaches have yet to be carefully examined in association with behavioral data. Therefore, we encourage a philosophical change in the interpretation of statistical outcomes, whereas we still retain a pluralistic perspective for making objective statistical choices given the uncertainties around different approaches in behavioral ecology. We provide recommendations on how these concepts could be made apparent in the presentation of statistical outputs in scientific papers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.