Chromatin modifications are essential for directing transcription during embryonic development. Bromodomain-containing protein 2 (Brd2; also called RING3 and Fsrg1) is one of four BET (bromodomain and extra terminal domain) family members known to selectively bind acetylated histones H3 and H4. Brd2 associates with multiple subunits of the transcriptional apparatus including the mediator, TFIID and Swi/Snf multi-protein complexes. While molecular interactions of Brd2 are known, the functions of Brd2 in mammalian embryogenesis remain unknown. In developing a mouse model deficient in Brd2, we find that Brd2 is required for the completion of embryogenesis and proper neural tube closure during development. Embryos lacking Brd2 expression survive up to embryonic day 13.5, soon after mid-gestation, and display fully penetrant neurulation defects that largely result in exencephaly of the developing hindbrain. In this study, we find that highest expression of Brd2 is detected in the developing neural tube, correlating with the neural tube defects found in Brd2-null embryos. Additionally, embryos lacking Brd2 expression display altered gene expression programs, including the mis-expression of multiple genes known to guide neuronal development. Together these results implicate essential roles for Brd2 as a critical integrator of chromatin structure and transcription during mammalian embryogenesis and neurogenesis.
The mammalian ovary is unique in that its reproductive life span is limited by oocyte quantity and quality. Oocytes are recruited from a finite pool of primordial follicles that are usually exhausted from the ovary during midadult life. If regulation of this pool is perturbed, the reproductive capacity of the ovary is compromised. TAF4B is a gonad-enriched subunit of the TFIID complex required for female fertility in mice. Previous characterization of TAF4B-deficient ovaries revealed several reproductive deficits that collectively result in infertility. However, the etiology of such fertility defects remains unknown. By assaying estrous cycle, ovarian pathology, and gene expression changes in young Taf4b-null female mice, we show that TAF4B-deficient female mice exhibit premature reproductive senescence. The rapid decline of ovarian function in Taf4b-null mice begins in early postnatal life, and follicle depletion is completed by 16 wk of age. To uncover differences in gene expression that may underlie accelerated ovarian aging, we compared genome-wide expression profiles of 3-wk-old, prepubescent Taf4b-null and wild-type ovaries. At 3 wk of age, decreased gene expression in Taf4b-null ovaries is similar to that seen in aged ovaries, revealing several molecular signatures of premature reproductive senescence, including reduced Smc1b. One significantly reduced transcript in the young TAF4B-null ovary codes for MOV10L1, a putative germline-specific RNA helicase that is related to the Drosophila RNA interference protein, armitage. We show here that Mov10l1 is expressed in mouse oocytes and that its expression is sensitive to TAF4B level, linking TAF4B to the posttranscriptional control of ovarian gene expression.
Primary ovarian insufficiency (POI) affects 1% of women under the age of 40 and is associated with premature ovarian follicle depletion. TAF4b deficiency in adult female mouse models results in hallmarks of POI including stereotyped gonadotropin alterations indicative of early menopause, poor oocyte quality, and infertility. However, the precise developmental mechanisms underlying these adult deficits remain unknown. Here we show that TAF4b is required for the initial establishment of the primordial follicle reserve at birth. Ovaries derived from TAF4b-deficient mice at birth exhibit delayed germ cell cyst breakdown and a significant increase in Activated Caspase 3 staining compared to control ovaries. Culturing neonatal TAF4b-deficient ovaries with the pan-caspase inhibitor ZVAD-FMK suppresses the excessive loss of these oocytes around the time of birth. These data reveal a novel TAF4b function in orchestrating the correct timing of germ cell cyst breakdown and establishment of the primordial follicle reserve during a critical window of development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.