The objective of this study was to evaluate processing methods for frozen beef subprimals; the effects of freezing and thawing rates on tenderness, sensory properties, and retail display were evaluated. There were 6 treatments: fresh, never frozen 14 d wet aged (14D); fresh, never frozen 21 d wet aged (21D); blast frozen-fast thawed (BF); blast frozen-slow thawed (BS); conventionally frozen-fast thawed (CF); and conventionally frozen-slow thawed (CS). All frozen beef subprimals were aged for 14 d before freezing. Three beef subprimal cuts, rib eye roll (n=90), strip loin (n=90), and top sirloin butt (n=90), were used with 3 replications of 5 samples per treatment per week (total of 9 wk, n=270). Blast freezing occurred by placing spacers between the boxes of meat on pallets at -28°C with high air velocity for 3 to 5 d. Conventional freezing occurred with boxes of meat stacked on pallets and placed in a -28°C freezer with minimal air movement for at least 10 d. Fast thawing of subprimals (to an internal temperature of -1°C to 1°C) occurred by immersion in a circulating water bath (<12°C) for 21 h, and slow thawing of subprimals occurred over a 2-wk period by placing individual subprimals on tables at 0°C. Steaks (2.5 cm thick) were cut from the longissimus thoracis (LT), longissimus lumborum (LL), and gluteus medius (GM) for Warner-Bratzler shear force (WBS), trained sensory evaluation, and retail display. For LL and GM beef steaks, frozen treatments were equal or lower in WBS values to 14D and 21D beef steaks. No differences were detected in WBS among the treatments applied to GM beef steaks (P=0.08). There were no differences in sensory tenderness among the LL, LT, and GM (P>0.05). All LL and LT beef steaks had approximately 4 d to 40% discoloration, and all GM steaks had over 3 d to 40% discoloration. Steaks from the LL and LT began to discolor at about 3 d, and the GM began to discolor after 1 d. For all beef subprimals, purge loss during storage and thawing was significantly greater for the slow-thawed subprimals (P<0.01), and all fast-thawed subprimals were equal or superior to 14D and 21D (P<0.01) in storage and thawing purge. During retail display, the greatest purge loss occurred in fast-thawed treatments (P<0.01). Overall, freezing rate did not affect purge loss, and neither freezing nor thawing rates had significant meaningful effects on WBS, and sensory properties were comparable with fresh, never-frozen subprimals.
Research was conducted to determine the effect of feeding de-oiled wet distillers grains plus solubles (WDGS) on beef fatty acid profile, retail shelf life and development of oxidation products during retail display (RD). A total of 336 crossbred yearling steers (initial BW = 351.08 ± 19.05 kg) were fed 1 of 7 dietary treatments: an all corn control (1:1 blend of dry rolled and high moisture corn), 35%, 50%, or 65% inclusion of WDGS, either full-fat or de-oiled. Within each treatment 15 Choice carcasses were randomly selected ( = 105), strip loins were obtained, aged 7 and 21 d, and representative steaks from each strip loin were placed in RD conditions for 7 d. Fatty acid profiles were determined (mg/100 g tissue basis) and differences ( ≤ 0.05) were found in the C16:1, C18:1T, C18:2 and total polyunsaturated fatty acids (PUFA) among dietary treatments. Palmitoleic acid (C16:1) was predominant ( < 0.0001) in the corn control group, intermediate in the 35% de-oiled WDGS group, but no differences ( > 0.05) were observed between all other diets. Elaidic acid (C18:1T) was greater ( = 0.01) in the 65% full-fat WDGS group, least for the corn control group, and intermediate for all other diets. Linoleic acid (C18:2) was greater ( = 0.0001) in all 3 full-fat WDGS groups and 65% de-oiled WDGS group (290.98 mg/100 g, on average), intermediate in the 50% and 35% de-oiled WDGS groups (231.08 and 227.16 mg/100 g, respectively) and least for the corn control group (177.70 mg/100 g). The PUFA content was greater ( < 0.01) in all 3 full-fat WDGS groups and 65% de-oiled WDGS group (337.13 mg/100 g, on average), intermediate in the 50% and 35% de-oiled WGDS groups (274.77 and 273.84 mg/100 g, respectively) and least for the corn control group (223.98 mg/100 g). Dietary treatment did not alter discoloration ( = 0.30) or lipid oxidation ( = 0.36). Shear force decreased with age and RD ( < 0.0001) but dietary treatment had no effect on shear force ( = 0.93). In general, feeding 35% and 50% de-oiled WDGS had intermediate PUFA content relative to a corn control or full-fat WDGS diet. Feeding de-oiled WDGS did not seem to increase beef shelf life and does not negatively alter beef quality parameters in relation to full-fat WDGS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.