Background: Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have signi cantly in uenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene ow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across ner spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results: Our genome-wide analyses corroborate range-wide, mitochondrial subspeci c designations and reveal pronounced ne-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (=0.0006-0.0009; W =0.0005-0.0007) relative to populations in California (=0.0014-0.0019; W =0.0011-0.0017) and the Rocky Mountains (=0.0025-0.0027; W =0.0021-0.0024), indicating substantial genetic drift in these isolated populations. Tajima's D was positive for all sites (D=0.240-0.811), consistent with recent contraction in population sizes range-wide. Conclusions: Substantial in uences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.
Efforts to conserve bats in the western United States have long been impeded by a lack of information on their winter whereabouts, particularly bats in the genus Myotis. The recent arrival of white-nose syndrome in western North America has increased the urgency to characterize winter roost habitats in this region. We compiled 4,549 winter bat survey records from 2,888 unique structures across 11 western states. Myotis bats were reported from 18.5% of structures with 95% of aggregations composed of ≤10 individuals. Only 11 structures contained ≥100 Myotis individuals and 6 contained ≥500 individuals. Townsend’s big-eared bat (Corynorhinus townsendii) were reported from 38% of structures, with 72% of aggregations composed of ≤10 individuals. Aggregations of ≥100 Townsend’s big-eared bats were observed at 41 different caves or mines across 9 states. We used zero-inflated negative binomial regression to explore biogeographic patterns of winter roost counts. Myotis counts were greater in caves than mines, in more recent years, and in more easterly longitudes, northerly latitudes, higher elevations, and in areas with higher surface temperatures and lower precipitation. Townsend’s big-eared bat counts were greater in caves, during more recent years, and in more westerly longitudes. Karst topography was associated with higher Townsend’s big-eared bat counts but did not appear to influence Myotis counts. We found stable or slightly-increasing trends over time in counts for both Myotis and Townsend’s big-eared bats from 82 hibernacula surveyed ≥5 winters since 1990. Highly-dispersed winter roosting of Myotis in the western USA complicates efforts to monitor population trends and impacts of disease. However, our results reveal opportunities to monitor winter population status of Townsend’s big-eared bats across this region.
To advance understanding of the distribution, climatic relationships, and status of American pikas (Ochotona princeps) in the Great Basin, United States, we compiled 2,387 records of extant pika sites surveyed since 2005, 89 records of documented extirpated sites (resurvey of historic sites), and 774 records of sites with old sign only. Extant sites extended across five degrees latitude and ten degrees longitude, encompassed six subregions, traversed forty mountain ranges, spanned 2,378 m in elevation (1,631-4,009 m), and comprised three of five currently described pika subspecies. A climate envelope for extant sites using the PRISM climate model expands the range of temperature and precipitation values that have been previously described. Extirpated and old-sign sites were mostly found within the geographic and climatic space of extant sites, but often in warmer and drier portions. Considerable overlap of extirpated, old, and extant groups within the same climate space suggests that nonclimatic factors have also contributed to population losses. The broad distribution and enlarged climate envelope of extant pika sites indicate that despite some localized extirpations, pika populations are persisting across Great Basin mountains, and appear to be able to tolerate a broader set of habitat conditions than previously understood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.