SummaryA prominent feature of the promoters of Bordetella pertussis fimbrial subunit genes fim2, fim3 and fimX is the presence of a 'C-stretch', a monotonic run of C residues. The C-stretch renders these genes capable of phase variation, through spontaneous variations in its length. For each of these we determined the length of the C-stretch that gave maximal transcriptional activity, and found that the three optimized promoters align perfectly, with identical distances between conserved upstream sequences and the downstream -10 elements and transcriptional start sites. We also demonstrated, for Pfim3, that the conserved sequence corresponds to BvgA binding sites. The more upstream of the two binding sites is predicted to be high affinity, by comparison to a functionally derived consensus BvgA-binding sequence. The other binding site is a fairly poor match to this consensus, with 10 of 14 bp belonging to the C-stretch. Interestingly, the centre of this downstream site of BvgA binding coincides exactly with the centre of the expected typical location of a -35 sequence. However, the lack of a recognizable -35 element (CCCCCC versus TTGACA), and the occupation of this site by BvgA~P suggest that activation of the fim promoters involves unusual interactions among BvgA, RNA polymerase and promoter DNA.
Multisubunit RNA polymerases are complex protein machines that require a specificity factor for the recognition of a specific transcription start site. Although bacterial σ factors are thought to be quite different from the specificity factors employed in higher organisms, a comparison of the σ/RNA polymerase structures with recent structures of eukaryotic Pol II together with TFIIB highlights significant functional similarities. Other work reveals that both bacterial and eukaryotic promoters are composed of modular elements that are used in different combinations. Bacteria, archaea, and eukaryotes also utilize similar strategies to alter core promoter specificity, from specificity factor exchange to the employment of activators that bind close to or overlap core promoter sequences, directing the transcriptional machinery to a new start site. Here we examine the details of core promoter recognition in bacteria that reveal the transcriptional similarities throughout biology.
Host-pathogen protein interactions are fundamental to every microbial infection, yet their identification has remained challenging due to the lack of simple detection tools that avoid abundance biases while providing an open format for experimental modifications. Here, we applied the Nucleic Acid-Programmable Protein Array and a HaloTag-Halo ligand detection system to determine the interaction network of Legionella pneumophila effectors (SidM and LidA) with 10,000 unique human proteins. We identified known targets of these L. pneumophila proteins and potentially novel interaction candidates. In addition, we applied our Click chemistry-based NAPPA platform to identify the substrates for SidM, an effector with an adenylyl transferase domain that catalyzes AMPylation (adenylylation), the covalent addition of adenosine monophosphate (AMP). We confirmed a subset of the novel SidM and LidA targets in independent in vitro pull-down and in vivo cell-based assays, and provided further insight into how these effectors may discriminate between different host Rab GTPases. Our method circumvents the purification of thousands of human and pathogen proteins, and does not require antibodies against or pre-labeling of query proteins. This system is amenable to high-throughput analysis of effectors from a wide variety of human pathogens that may bind to and/or post-translationally modify targets within the human proteome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.