The nopaline synthase (nos) promoter is expressed in a wide range of plant cell types and regulated by various developmental and environmental factors. The nos upstream control region essential for this regulation was studied by means of synthetic oligomers using transient and stable transformation systems. Insertion of a 20 nucleotide sequence containing two hexamer motifs and a spacer region into deletion mutants lacking the upstream control region was essential for promoter activity. Mutation of one or more nucleotides of either hexamer sequence significantly altered the strength of expression of the nos promoter. Point mutations within the spacer region also strongly influenced promoter strength. Insertion of multiple copies of the 20 nucleotide sequence into the nonfunctional deletion mutants proportionally increased the promoter activity. These results suggest that this twenty nucleotide sequence is essential for the nos promoter to function. Substitution of the nos element with the ocs or 35S as-1 which contain similar hexamer motifs restored not only promoter activity but also responses to wounding, auxin, methyl jasmonate, and salicylic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.