A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant protein product (e.g. EGFR inhibitor treatment in EGFR-mutant lung cancers). However, genetically-driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1122 EGFR-mutant lung cancer cell-free DNA samples and whole exome analysis of seven longitudinally collected tumor samples from an EGFR-mutant lung cancer patient, we identify critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers. We define new pathways limiting EGFR inhibitor response, including WNT/β-catenin and cell cycle gene (e.g. CDK4, CDK6) alterations. Tumor genomic complexity increases with EGFR inhibitor treatment and co-occurring alterations in CTNNB1, and PIK3CA exhibit non-redundant functions that cooperatively promote tumor metastasis or limit EGFR inhibitor response. This study challenges the prevailing single-gene driver oncogene view and links clinical outcomes to co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancer patients.
To analytically and clinically validate a circulating cell-free tumor DNA sequencing test for comprehensive tumor genotyping and demonstrate its clinical feasibility. Analytic validation was conducted according to established principles and guidelines. Blood-to-blood clinical validation comprised blinded external comparison with clinical droplet digital PCR across 222 consecutive biomarker-positive clinical samples. Blood-to-tissue clinical validation comprised comparison of digital sequencing calls to those documented in the medical record of 543 consecutive lung cancer patients. Clinical experience was reported from 10,593 consecutive clinical samples. Digital sequencing technology enabled variant detection down to 0.02% to 0.04% allelic fraction/2.12 copies with ≤0.3%/2.24-2.76 copies 95% limits of detection while maintaining high specificity [prevalence-adjusted positive predictive values (PPV) >98%]. Clinical validation using orthogonal plasma- and tissue-based clinical genotyping across >750 patients demonstrated high accuracy and specificity [positive percent agreement (PPAs) and negative percent agreement (NPAs) >99% and PPVs 92%-100%]. Clinical use in 10,593 advanced adult solid tumor patients demonstrated high feasibility (>99.6% technical success rate) and clinical sensitivity (85.9%), with high potential actionability (16.7% with FDA-approved on-label treatment options; 72.0% with treatment or trial recommendations), particularly in non-small cell lung cancer, where 34.5% of patient samples comprised a directly targetable standard-of-care biomarker. High concordance with orthogonal clinical plasma- and tissue-based genotyping methods supports the clinical accuracy of digital sequencing across all four types of targetable genomic alterations. Digital sequencing's clinical applicability is further supported by high rates of technical success and biomarker target discovery. .
Running title: Somatic genomic landscape of circulating tumor DNA Keywords: circulating tumor DNA, tumor heterogeneity, resistance, genomic landscape, cfDNA clonality Financial support: The study was funded by and conducted at Guardant Health, Inc. No additional grant support or administrative support was provided for the study. *Corresponding author:Stephen R. Fairclough Translational relevanceThis study describes genomic alterations from the largest cell-free circulating tumor DNA cohort to date, as derived from regular clinical practice. The high prevalence of resistance alterations found in advanced, treated cancer patients necessitated accurate methods for determining mutation clonality and driver/resistance status from plasma. We provide such methods, thereby extending the utility of cell-free DNA sequencing analysis. Our finding of an association between estimated circulating tumor DNA (ctDNA) levels and tumor mutational burden ascertained from plasma suggests that ctDNA level is likely an important variable to consider for immunotherapy applications of ctDNA analysis. Although cell-free DNA can provide a summary of tumor heterogeneity across multiple metastatic sites in a patient, our findings of high variability in ctDNA levels across patients, and its impact on variant detection, highlight the need for an improved understanding of factors influencing ctDNA levels and safe methods for maximizing them at the time of ctDNA testing. AbstractPurpose: Cell-free DNA (cfDNA) sequencing provides a non-invasive method for obtaining actionable genomic information to guide personalized cancer treatment, but the presence of multiple alterations in circulation related to treatment and tumor heterogeneity complicate the interpretation of the observed variants.Experimental Design: We describe the somatic mutation landscape of 70 cancer genes from cfDNA deep-sequencing analysis of 21,807 patients with treated, late-stage cancers across >50 cancer types. To facilitate interpretation of the genomic complexity of circulating tumor DNA in advanced, treated cancer patients, we developed methods to identify cfDNA copy-number driver alterations and cfDNA clonality.Results: Patterns and prevalence of cfDNA alterations in major driver genes for non-small cell lung, breast, and colorectal cancer largely recapitulated those from tumor tissue sequencing compendia (TCGA and COSMIC;, with the principle differences in alteration prevalence being due to patient treatment. This highly sensitive cfDNA sequencing assay revealed numerous subclonal tumor-derived alterations, expected as a result of clonal evolution, but leading to an apparent departure from mutual exclusivity in treatment-naïve tumors. Upon applying novel cfDNA clonality and copy-number driver identification methods, robust mutual exclusivity was observed among predicted truncal driver cfDNA alterations (FDR=5x10 -7 for EGFR and ERBB2), in effect distinguishing tumor-initiating alterations from secondary alterations. Treatment-associated resistance, including both novel ...
Summary Background Squamous cell carcinoma of the anal canal (SCCA) is a rare malignancy associated with infection by human papillomavirus (HPV). No consensus treatment approach exists for the treatment of metastatic disease. Because intratumoral HPV oncoproteins upregulate immune checkpoint proteins such as PD-1 to evade immune-mediated cytotoxicity, we did a trial of the anti-PD-1 antibody nivolumab for patients with metastatic SCCA. Methods We did this single-arm, multicentre, phase 2 trial at ten academic centres in the USA. We enrolled patients with treatment-refractory metastatic SCCA, who were given nivolumab every 2 weeks (3 mg/kg). The primary endpoint was response according to Response Evaluation Criteria in Solid Tumors, version 1.1, in the intention-to-treat population. At the time of data cutoff, the study was ongoing, with patients continuing to receive treatment. The study is registered with ClinicalTrials.gov, number NCT02314169. Findings We screened 39 patients, of whom 37 were enrolled and received at least one dose of nivolumab. Among the 37 patients, nine (24% [95% CI 15–33]) had responses. There were two complete responses and seven partial responses. Grade 3 adverse events were anaemia (n=2), fatigue (n=1), rash (n=1), and hypothyroidism (n=1). No serious adverse events were reported. Interpretation To our knowledge, this is the first completed phase 2 trial of immunotherapy for SCCA. Nivolumab is well tolerated and effective as a monotherapy for patients with metastatic SCCA. Immune checkpoint blockade appears to be a promising approach for patients with this orphan disease. Funding National Cancer Institute/Cancer Therapy Evaluation Program, the HPV and Anal Cancer Foundation, the E B Anal Cancer Fund, The University of Texas MD Anderson Moon Shots Program, and an anonymous philanthropic donor.
ABSTRACT"Liquid biopsy" approaches analyzing cell-free DNA (cfDNA) from the blood of patients with cancer are increasingly utilized in clinical practice. However, it is not yet known whether cfDNA sequencing from large cohorts of patients with cancer can detect genomic alterations at frequencies similar to those observed by direct tumor sequencing, and whether this approach can generate novel insights. Here, we report next-generation sequencing data from cfDNA of 1,397 patients with colorectal cancer. Overall, frequencies of genomic alterations detected in cfDNA were comparable to those observed in three independent tissue-based colorectal cancer sequencing compendia. Our analysis also identifi ed a novel cluster of extracellular domain (ECD) mutations in EGFR , mediating resistance by blocking binding of anti-EGFR antibodies. Patients with EGFR ECD mutations displayed striking tumor heterogeneity, with 91% harboring multiple distinct resistance alterations (range, 1-13; median, 4). These results suggest that cfDNA profi ling can effectively defi ne the genomic landscape of cancer and yield important biological insights. SIGNIFICANCE:This study provides one of the fi rst examples of how large-scale genomic profi ling of cfDNA from patients with colorectal cancer can detect genomic alterations at frequencies comparable to those observed by direct tumor sequencing. Sequencing of cfDNA also generated insights into tumor heterogeneity and therapeutic resistance and identifi ed novel EGFR ectodomain mutations. Cancer Discov; 8(2);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.