This study combined multiple aquatic and terrestrial proxies, including diatoms, pollen, grain size, and bulk-sediment chemistry to reconstruct the history of three lake sites located in the central Sand Hills of Nebraska, USA. Long-term changes in effective moisture are evident at all sites, with significant changes occurring at ~6000, ~4000, and ~ 2000 cal. yr BP. Both aquatic and terrestrial indicators suggest that effective moisture was low between 10,000 and ~6000 cal. yr BP, and that this time interval was the driest period of the Holocene. The dominance of benthic and tychoplanktic diatom taxa indicates relatively shallow lake-level, high sand influx indicates moderately high eolian activity, and the pollen assemblage suggests xeric grasslands with abundant mud flats. About 6000 cal. yr BP, all three sites experienced an increase in effective moisture. Lake-level rise is indicated by increases in planktic and tychoplanktic diatoms relative to benthic taxa, while greater abundance of grass pollen and charcoal, and decreased eolian flux indicate stabilized dunes with dense vegetation sufficient to fuel local fires. A significant hydrologic shift recorded at all sites occurred at ~4000 cal. yr BP. This event was characterized by substantial lake-level rise, yet decreased grass cover and fire frequency, and increased eolian activity. Water-table rise may have been caused by a combination of factors including: (1) formation of dune-dams that blocked old drainage channels, (2) reduced grass cover and hence reduced evapotranspiration, and (3) changes in the frequency and duration of drought. The most likely cause(s) of the differential response of the terrestrial and aquatic systems at this time is not clear, none-the-less the late Holocene was not nearly as dry as the interval prior to 6000 cal. yr BP. The last ~2000 yr were characterized by several short-term fluctuations in lake level, including an interval of drought between 950 and 750 cal. yr BP, coincident with increased eolian activity during the latter part of the Medieval Climatic Anomaly.
In the central Great Plains of North America, loess stratigraphy suggests that climate during the late Pleistocene was cold and dry. However, this record is discontinuous, and there are few other records of late-Pleistocene conditions. Cobb Basin, located on the northern edge of the Nebraska Sand Hills, contains lacustrine sediments deposited during Marine Isotope Stage 3, beginning approximately 45,000 cal yr BP and continuing for at least 10,000 yr. The lake was formed by a dune dam blockage on the ancient Niobrara River, and its deposits contain a diatom record that indicates changes through time in lake depth driven by changes in effective moisture. During the earliest stages of lake formation, the climate was arid enough to mobilize dunes and emplace dune sand into a blocking position within the Niobrara streambed. Diatom assemblages suggest that lake-level was shallow at formation, increased substantially during a wet interval, and then became shallow again, as arid conditions resumed. By about 27,000 cal yr BP the lake was filled, and a shallow ephemeral river occupied the basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.