While the constitutive, 26S proteasome plays an important role in regulating many important cellular processes, a variant form known as the immunoproteasome is thought to primarily function in adaptive immune responses. However, recent studies indicate an association of immunoproteasomes with many physiological disorders such as cancer, neurodegenerative, and inflammatory diseases. Despite this, the detailed functions of the immunoproteasome remain poorly understood. Immunoproteasome-specific probes are essential to gain insight into immunoproteasome function. Here, we describe for the first time the development of the cell-permeable, activity-based fluorescent probes, UK101-Fluor and UK101-B660, which selectively target the catalytically active LMP2/β1i subunit of the immunoproteasome. These probes will facilitate rapid detection of the cellular localization of catalytically active immunoproteasomes in living cells, providing a valuable tool to analyze immunoproteasome functions. Additionally, as LMP2/β1i may serve as a potential tumor biomarker, an LMP2/β1i-targeting fluorescent imaging probe may be applicable to a rapid readout assay to determine tumor LMP2/β1i levels.
We performed a virtual screen of ∼340 000 small molecules against the active site of proteasomes followed by in vitro assays and subsequent optimization, yielding a proteasome inhibitor with pyrazole scaffold. The pyrazole-scaffold compound displayed excellent metabolic stability and was highly effective in suppressing solid tumor growth in vivo. Furthermore, the effectiveness of this compound was not negatively impacted by resistance to bortezomib or carfilzomib.
The discovery of NF-κB signaling pathways has greatly enhanced our understanding of inflammatory and immune responses. In the canonical NF-κB pathway, the proteasomal degradation of IκBα, an inhibitory protein of NF-κB, is widely accepted to be a key regulatory step. However, contradictory findings have been reported as to whether the immunoproteasome plays an obligatory role in the degradation of IκBα and activation of the canonical NF-κB pathway. Such results were obtained mainly using traditional gene deletion strategies. Here, we have revisited the involvement of the immunoproteasome in the canonical NF-κB pathway using small molecule inhibitors of the immunoproteasome, namely UK-101 and LKS01 targeting β1i and β5i, respectively. H23 and Panc-1 cancer cells were pretreated with UK-101, LKS01 or epoxomicin (a prototypic inhibitor targeting both the constitutive proteasome and immunoproteasome). We then examined whether these pretreatments lead to any defect in activating the canonical NF-κB pathway following TNFα exposure by monitoring the phosphorylation and degradation of IκBα, nuclear translocation of NF-κB proteins and DNA binding and transcriptional activity of NF-κB. Our results consistently indicated that there is no defect in activating the canonical NF-κB pathway following selective inhibition of the immunoproteasome catalytic subunits β1i, β5i or both using UK-101 and LKS01, in contrast to epoxomicin. In summary, our current results using chemical genetic approaches strongly support that the catalytic activity of the immunoproteasome subunits β1i and β5i is not required for canonical NF-κB activation in lung and pancreatic adenocarcinoma cell line models.
Over the years, the proteasome has been extensively investigated due to its crucial roles in many important signaling pathways and its implications in diseases. Two proteasome inhibitors—bortezomib and carfilzomib—have received FDA approval for the treatment of multiple myeloma, thereby validating the proteasome as a chemotherapeutic target. As a result, further research efforts have been focused on dissecting the complex biology of the proteasome to gain the insight required for developing next-generation proteasome inhibitors. It is clear that chemical probes have made significant contributions to these efforts, mostly by functioning as inhibitors that selectively block the catalytic activity of proteasomes. Analogues of these inhibitors are now providing additional tools for visualization of catalytically active proteasome subunits, several of which allow real-time monitoring of proteasome activity in living cells as well as in in vivo settings. These imaging probes will provide powerful tools for assessing the efficacy of proteasome inhibitors in clinical settings. In this review, we will focus on the recent efforts towards developing imaging probes of proteasomes, including the latest developments in immunoproteasome-selective imaging probes.
Mammalian cells have two main types of proteasomes, the constitutive proteasome and the immunoproteasome, each containing a distinct set of three catalytic subunits. Recently, additional proteasome subtypes containing a non-standard mixture of catalytic subunits have gained increasing attention, especially due to their presence in cancer settings. However, practical methods for identifying proteasome subtypes have been lacking. Here, we report the development of the first fluorescence resonance energy transfer (FRET)-based strategy that can be utilized to identify different proteasome subtypes present within cells. We have developed FRET donor- and acceptor-probes that are based on previously-reported peptide epoxyketones and selectively target individual proteasome catalytic subunits. Using the purified proteasome and cancer cell lysates, we demonstrate the feasibility of a FRET-based approach for determining the catalytic subunit composition of individual 20S proteasome subtypes. Ultimately, this approach may be utilized to study the functions of individual proteasome subtypes in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.