Lysozyme is a 1,4-β-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine the effect of a purified granulated lysozyme, compared with antibiotics, on growth performance, small intestinal morphology, and Campylobacter shedding in 10-d-old pigs. Forty-eight pigs (n = 16 per treatment), with an initial BW of 4.0 ± 0.1 kg (P > 0.40), were weaned at 10 d of age, blocked by litter and sex, and assigned to pens (8 pigs/pen). Each block was randomly assigned to consume 1 of 3 liquid dietary treatments for 14 d: a control diet, the control diet + lysozyme (100 mg/kg of diet), or the control diet + antibiotics (neomycin and oxytetracycline, 16 mg/kg of diet). Pigs were weighed and blood was sampled on d 0, 7, and 14. Blood was analyzed for plasma urea N and IgA. After 14 d of treatment, pigs were killed and samples of the jejunum and ileum were collected and fixed to measure villus height and crypt depth. Rectal swabs were taken on d 0, 7, and 14 of treatment, and samples of ileal and cecal contents were taken at d 14 of treatment to determine the presence of Campylobacter. Pigs consuming lysozyme and antibiotics gained BW at a faster rate than did control pigs over the course of the study (402 ± 12 and 422 ± 14 g/d, respectively, vs. 364 ± 14 g/d; P < 0.02), resulting in heavier ending BW (9.9 ± 0.3, 9.9 ± 0.3, and 9.0 ± 0.2 kg for pigs in the lysozyme, antibiotic, and control groups, respectively; P < 0.03). Immunoglobulin A decreased and plasma urea N increased over the course of the study (P < 0.1), regardless of dietary treatment (P > 0.6). Crypt depth was increased in pigs fed lysozyme- and antibiotic-treated diets, compared with pigs fed the control diet, in both the jejunum (60.0 ± 2.8 and 62.2 ± 3.0 µm, respectively, vs. 50.7 ± 3.1 µm; P < 0.03) and ileum (76.0 ± 7.5 and 72.2 ± 5.0 µm, respectively, vs. 52.4 ± 3.5 µm; P < 0.02). Villus height did not differ in the jejunum (P > 0.2) but was increased in the ileum of pigs consuming the lysozyme- and antibiotic-treated diets, compared with pigs fed the control diet (312 ± 20 and 314 ± 10 µm, respectively, vs. 263 ± 15 µm; P < 0.4). Small intestinal total mucosa and mucosal protein concentrations, as well as disaccharidase-specific activities, were not altered by lysozyme or antibiotics (P > 0.05). Campylobacter was detected in 27% of control samples but in only 5% of samples from pigs fed antibiotics and 8% of samples from pigs fed lysozyme (P < 0.01). Thus, granulated lysozyme is a suitable alternative to antibiotics for 10-d-old pigs consuming manufactured liquid diets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.