Glioblastoma multiforme (GBM) is a highly lethal brain tumor affecting children and adults, with the majority of affected individuals dying from their disease by 2 years following diagnosis. Other groups have reported the association of cytomegalovirus (CMV) with GBM, and we sought to confirm these findings in a large series of patients with primary GBM from our institution. Immunohistochemical analysis of paraffin embedded tissue sections was performed on 49 newly diagnosed GBM tumors, the largest series reported to date. We confirmed the presence of CMV pp65 on 25/49 (51%) and of IE1 on 8/49 (16%) of these tumors. While pp65 and IE1 are generally found in the nucleus of cells that are permissibly infected by CMV, GBM in this series had mostly cytoplasmic staining, with only 16% having nuclear staining for one or both of these antigens. We infected GBM cell lines with a laboratory strain of CMV, and found that most of the staining was cytoplasmic, with some perinuclear localization of IE1. To test the potential for CMV infected GBM cells to be recognized by CMV pp65 and IE1 specific cytotoxic T lymphocytes (CTL), we used CMV infected GBM cell lines in cytotoxicity assays with human leukocyte antigen partially matched CMV CTL. Lysis of CMV infected GBM tumor cells was accentuated by pre-treating these cell lines with either the demethylating agent decitabine or interferon-γ, both of which were shown to increase MHC Class I and II expression on tumor cells in vitro. These studies confirm the presence of CMV pp65 or IE1 on approximately half of GBM, with the possibility that CMV positive tumor cells can be recognized by CMV pp65/IE1 specific T cells.
Approximately half of patients with stage IV neuroblastoma are expected to relapse despite current therapy, and when this occurs, there is little likelihood of achieving a cure. Very few clinical trials have been conducted to determine whether cellular immune responses could be harnessed to fight this tumor, largely because potential tumor antigens for cytotoxic T lymphocytes (CTL) are limited. MAGE-A1, MAGE-A3, and NY-ESO-1 are cancer-testis (CT) antigens expressed on a number of malignant solid tumors, including neuroblastoma, but many tumor cell lines down-regulate the expression of CT antigens as well as major histocompatibility (MHC) antigens, precluding recognition by antigen-specific T cells. If expression of cancer antigens on neuroblastoma could be enhanced pharmacologically, CT antigen-specific immunotherapy could be considered for this tumor. We have demonstrated that the expression of MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells following exposure to pharmacologic levels of the demethylating agent 5-aza-2'-deoxycytidine (decitabine, DAC). Expression of NY-ESO-1, MAGE-A1, or MAGE-A3 was induced in 10/10 neuroblastoma cell lines after 5 days of exposure to DAC. Culture of neuroblastoma cell lines with IFN-γ was also associated with an increased expression of either MHC Class I or II by cytofluorometry, as reported by other groups. MAGE-A1, MAGE-A3, and NY-ESO-1-specific CTL were cultured from volunteer donors by stimulating peripheral blood mononuclear cells with dendritic cells pulsed with overlapping peptide mixes derived from full-length proteins, and these CTL preferentially lysed HLA partially matched, DAC-treated neuroblastoma and glioblastoma cell lines. These studies show that demethylating chemotherapy can be combined with IFN-γ to increase the expression of CT antigens and MHC molecules on neuroblastoma cells, and pre-treatment with these agents makes tumor cell lines more susceptible to CTL-mediated killing. These data provide a basis to consider the use of demethylating chemotherapy in neuroblastoma patients, in conjunction with immune therapies that facilitate the expansion of CT antigen-specific CTL.
Adoptive immunotherapy with cytomegalovirus (CMV) specific cytotoxic T lymphocytes (CTL) is an effective strategy for preventing and treating viral reactivation following allogeneic stem cell transplantation (SCT). We have previously shown that CMV CTL can be generated in 1-2 weeks by stimulating donor lymphocytes with peptide mixes derived from full length pp65 and IE1. We conducted a multi-institutional study of CMV specific CTL for patients with persistent or anti-viral resistant CMV infections following allogeneic SCT, to determine the safety, feasibility, and immunologic effects of this approach. We were successful in stimulating CTL from 10/10 donors with pooled CMV overlapping peptide mixes. Five of the 7 subjects who met infusion criteria had new onset CMV specific CTL activity detected within 4-6 weeks post infusion. Of the two subjects who did not have immunologic responses post-infusion, one received CTL with a low viability post-thawing, and the other patient was receiving cyclosporine A and systemic corticosteroids at the time of the infusion, achieving only a low, transient increase (10%) in pp65 specific activity. There was no GVHD attributable to these infusions. These findings indicate that the infusion of CTL stimulated over 1-2 weeks with overlapping CMV peptides can result in virus specific immune reconstitution in SCT recipients, without exacerbations of GVHD.
The profiling and monitoring of immune responses are key elements in the evaluation of the efficacy and development of new biotherapies, and a number of assays have been introduced for analyzing various immune parameters before, during, and after immunotherapy. The choice of immune assays for a given clinical trial depends on the known or suggested immunomodulating mechanisms associated with the tested therapeutic modality. Cell-mediated cytotoxicity represents a key mechanism in the immune response to various pathogens and tumors. Therefore, the selection of monitoring methods for the appropriate assessment of cell-mediated cytotoxicity is thought to be crucial. Assays that can detect both cytotoxic T lymphocytes (CTL) frequency and function, such as the IFN-γ enzyme-linked immunospot assay (ELISPOT) have gained increasing popularity for monitoring clinical trials and in basic research. Results from various clinical trials, including peptide and whole tumor cell vaccination and cytokine treatment, have shown the suitability of the IFN-γ ELISPOT assay for monitoring T cell responses. However, the Granzyme B ELISPOT assay and Perforin ELISPOT assay may represent a more direct analysis of cell-mediated cytotoxicity as compared to the IFN-γ ELISPOT, since Granzyme B and perforin are the key mediators of target cell death via the granule-mediated pathway. In this review we analyze our own data and the data reported by others with regard to the application of various modifications of ELISPOT assays for monitoring CTL activity in clinical vaccine trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.