This work reports a facile method for preparing highly photoactive α-Fe(2)O(3) films as well as their implementation as photoanodes for water oxidation. Transparent α-Fe(2)O(3) films were prepared by a new deposition-annealing (DA) process using nontoxic iron(III) chloride as the Fe precursor, followed by annealing at 550 °C in air. Ti-doped α-Fe(2)O(3) films were prepared by the same method, with titanium butoxide added as the Ti precursor. Impedance measurements show that the Ti-dopant serves as an electron donor and increases the donor density by 2 orders of magnitude. The photoelectrochemical performance of undoped and Ti-doped α-Fe(2)O(3) photoanodes was characterized and optimized through controlled variation of the Fe and Ti precursor concentration, annealing conditions, and the number of DA cycles. Compared to the undoped sample, the photocurrent onset potential of Ti-doped α-Fe(2)O(3) is shifted about 0.1-0.2 V to lower potential, thus improving the photocurrent and incident photon to current conversion efficiency (IPCE) at lower bias voltages. Significantly, the optimized Ti-doped α-Fe(2)O(3) film achieved the highest photocurrent density (1.83 mA/cm(2)) and IPCE values at 1.02 V vs RHE for α-Fe(2)O(3) photoanode. The enhanced photocurrent is attributed to the improved donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds, as a result of Ti doping.
Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and females for prezygotic reproductive investment is the highest known for bryophytes.
On the basis of a combination of X-ray photoelectron spectroscopy and synchrotron-based X-ray emission spectroscopy, we present a detailed characterization of the chemical structure of CdS:O thin films that can be employed as a substitute for CdS layers in thin-film solar cells. It is possible to analyze the local chemical environment of the probed elements, in particular sulfur, hence allowing insights into the species-specific composition of the films and their surfaces. A detailed quantification of the observed sulfur environments (i.e., sulfide, sulfate, and an intermediate oxide) as a function of oxygen content is presented, allowing a deliberate optimization of CdS:O thin films for their use as alternative buffer layers in thin-film photovoltaic devices.
The chemical and electronic structures of industrial chalcopyrite photovoltaic absorbers after KF post-deposition treatment (KF-PDT) are investigated using electron spectroscopies to probe the occupied and unoccupied electronic states. In contrast to a variety of recent publications on the impact of KF-PDT, this study focuses on industrial Cu(In,Ga)(S,Se)2 absorbers that also contain sulfur at the surface. We find that the KF-PDT removes surface adsorbates and oxides and also observe a change in the S/Se ratio. Furthermore, the KF-PDT leads to a Cu reduction at the surface but to a much lower degree than the strongly Cu-depleted or even Cu-free surfaces reported for (non-industrial) sulfur-free Cu(In,Ga)Se2 absorbers. The valence band maximum at the surface is found at a lower energy compared to the untreated absorber, and the conduction band minimum is found at a higher energy, overall revealing a widening of the bandgap in the surface region.
Understanding the impact of impurities in solar absorbers is critical to engineering high-performance in devices, particularly over extended periods of time. Here, we use hybrid functional calculations to explore the role of hydrogen interstitial (Hi) defects in the electronic properties of a number of attractive solar absorbers within the chalcopyrite and kesterite families to identify how this common impurity may influence device performance. Our results identify that Hi can inhibit the highly p-type conditions desirable for several higher-band gap absorbers and that H incorporation could detrimentally affect the open-circuit voltage (Voc) and limit device efficiencies. Additionally, we find that Hi can drive the Fermi level away from the valence band edge enough to lead to n-type conductivity in a number of chalcopyrite and kesterite absorbers, particularly those containing Ag rather than Cu. We find that these effects can lead to interfacial Fermi-level pinning that can qualitatively explain the observed performance in high-Ga content CIGSe solar cells that exhibit saturation in the Voc with increasing band gap. Our results suggest that compositional grading rather than bulk alloying, such as by creating In-rich surfaces, may be a better strategy to favorably engineering improved thin-film photovoltaics with larger-band gap absorbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.