Grain boundaries (GBs) are undesired in large area layered 2D materials as they degrade the device quality and their electronic performance. Here we show that the grain boundaries in graphene which induce additional scattering of carriers in the conduction channel also act as an additional and strong source of electrical noise especially at the room temperature. From graphene field effect transistors consisting of single GB, we find that the electrical noise across the graphene GBs can be nearly 10 000 times larger than the noise from equivalent dimensions in single crystalline graphene. At high carrier densities (n), the noise magnitude across the GBs decreases as ∝1/n, suggesting Hooge-type mobility fluctuations, whereas at low n close to the Dirac point, the noise magnitude could be quantitatively described by the fluctuations in the number of propagating modes across the GB.
Despite its importance in the large-scale synthesis of transition metal dichalcogenides (TMDC) molecular layers, the generic quantum effects on electrical transport across individual grain boundaries (GBs) in TMDC monolayers remain unclear. Here we demonstrate that strong carrier localization due to the increased density of defects determines both temperature dependence of electrical transport and low-frequency noise at the GBs of chemical vapor deposition (CVD)-grown MoS layers. Using field effect devices designed to explore transport across individual GBs, we show that the localization length of electrons in the GB region is ∼30-70% lower than that within the grain, even though the room temperature conductance across the GB, oriented perpendicular to the overall flow of current, may be lower or higher than the intragrain region. Remarkably, we find that the stronger localization is accompanied by nearly 5 orders of magnitude enhancement in the low-frequency noise at the GB region, which increases exponentially when the temperature is reduced. The microscopic framework of electrical transport and noise developed in this paper may be readily extended to other strongly localized two-dimensional systems, including other members of the TMDC family.
Van der Waals hybrids of graphene and transition metal dichalcogenides exhibit an extremely large response to optical excitation, yet counting of photons with single-photon resolution is not achieved. Here, a dual-gated bilayer graphene (BLG) and molybdenum disulphide (MoS ) hybrid are demonstrated, where opening a band gap in the BLG allows extremely low channel (receiver) noise and large optical gain (≈10 ) simultaneously. The resulting device is capable of unambiguous determination of the Poissonian emission statistics of an optical source with single-photon resolution at an operating temperature of 80 K, dark count rate 0.07 Hz, and linear dynamic range of ≈40 dB. Single-shot number-resolved single-photon detection with van der Waals heterostructures may impact multiple technologies, including the linear optical quantum computation.
Resolving low-energy features in
the density of states (DOS) holds
the key to understanding a wide variety of rich novel phenomena in
graphene-based 2D heterostructures. The Lifshitz transition in bilayer
graphene (BLG) arising from trigonal warping has been established
theoretically and experimentally. Nevertheless, the experimental realization
of its effects on transport properties has been challenging because
of its relatively low energy scale (∼1 meV). In this work,
we demonstrate that the thermoelectric power (TEP) can be used as
an effective probe to investigate fine changes in the DOS of BLG.
We observed additional entropy features in the vicinity of the charge
neutrality point (CNP) in gapped BLG. This apparent violation of the
Mott formula can be explained quantitatively by considering the effects
of trigonal warping, thereby serving as possible evidence of a Lifshitz
transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.