Bedrock river incision drives the development of much of Earth's surface topography, and thereby shapes the structure of mountain belts and modulates Earth's habitability through its effects on soil erosion, nutrient fluxes and global climate. Although it has long been expected that river incision rates should depend strongly on precipitation rates, quantifying the effects of precipitation rates on bedrock river incision rates has proved difficult, partly because river incision rates are difficult to measure and partly because non-climatic factors can obscure climatic effects at sites where river incision rates have been measured. Here we present measurements of river incision rates across one of Earth's steepest rainfall gradients, which show that precipitation rates do indeed influence long-term bedrock river incision rates. We apply a widely used empirical law for bedrock river incision to a series of rivers on the Hawaiian island of Kaua'i, where mean annual precipitation ranges from 0.5 metres to 9.5 metres (ref. 12)-over 70 per cent of the global range-and river incision rates averaged over millions of years can be inferred from the depth of river canyons and the age of the volcanic bedrock. Both a time-averaged analysis and numerical modelling of transient river incision reveal that the long-term efficiency of bedrock river incision across Kaua'i is positively correlated with upstream-averaged mean annual precipitation rates. We provide theoretical context for this result by demonstrating that our measurements are consistent with a linear dependence of river incision rates on stream power, the rate of energy expenditure by the flow on the riverbed. These observations provide rare empirical evidence for the long-proposed coupling between climate and river incision, suggesting that previously proposed feedbacks among topography, climate and tectonics may occur.
Erosion of volcanic ocean islands creates dramatic landscapes, modulates Earth's carbon cycle, and delivers sediment to coasts and reefs. Because many volcanic islands have large climate gradients and minimal variations in lithology and tectonic history, they are excellent natural laboratories for studying climatic effects on the evolution of topography. Despite concerns that modern sediment fl uxes to island coasts may exceed long-term fl uxes, little is known about how erosion rates and processes vary across island interiors, how erosion rates are infl uenced by the strong climate gradients on many islands, and how modern island erosion rates compare to long-term rates. Here, we present new measurements of erosion rates over 5 yr to 5 m.y. timescales on the Hawaiian island of Kaua'i, across which mean annual precipitation ranges from 0.5 to 9.5 m/yr. Eroded rock volumes from basins across Kaua'i indicate that million-year-scale erosion rates are correlated with modern mean annual precipitation and range from 8 to 335 t km -2 yr -1 . In Kaua'i's Hanalei River basin, 3 He concentrations in detrital olivines imply millennialscale erosion rates of >126 to >390 t km -2 yr -1 from olivine-bearing hillslopes, while fl uvial suspended sediment fl uxes measured from 2004 to 2009 plus estimates of chemical and bed-load fl uxes imply basin-averaged erosion rates of 545 ± 128 t km -2 yr -1 . Mapping of landslide scars in satellite imagery of the Hanalei basin from 2004 and 2010 implies landslide-driven erosion rates of 30-47 t km -2 yr -1 . These measurements imply that modern erosion rates in the Hanalei basin are no more than 2.3 ± 0.6 times faster than millennial-scale erosion rates, and, to the extent that modern precipitation patterns resemble long-term patterns, they are consistent with a link between precipitation rates and longterm erosion rates.
Bathymetry and global records of island drowning show that mantle processes control how long hotspot islands stay above water.
High-elevation, low-relief surfaces are widespread in many mountain belts. However, the origin of these surfaces has long been debated. In particular, the southeast Tibetan Plateau has extensive low-relief surfaces perched above deep valleys and in the headwaters of three of the world’s largest rivers (Salween, Mekong, and Yangtze Rivers). Various geologic data and geodynamic models show that many mountain belts grow first to a certain height and then laterally in an outward propagation sequence. By translating this information into a kinematic propagating uplift function in a landscape evolution model, we propose that the high-elevation, low-relief surfaces in the southeast Tibetan Plateau are simply a consequence of mountain growth and do not require a special process to form. The propagating uplift forms an elongated river network geometry with broad high-elevation, low-relief headwaters and interfluves that persist for tens of millions of years, consistent with the observed geochronology. We suggest that the low-relief interfluves can be long-lived because they lack the drainage networks necessary to keep pace with the rapid incision of the large main-stem rivers. The propagating uplift also produces spatial and temporal exhumation patterns and river profile morphologies that match observations. Our modeling therefore reconciles geomorphic observations with geodynamic models of uplift of the southeast Tibetan Plateau, and it provides a simple mechanism to explain the low-relief surfaces observed in several mountain belts on Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.