Locomotion is controlled by spinal networks that generate rhythm and coordinate left-right and flexor-extensor patterning. Defined populations of spinal interneurons have been linked to patterning circuits; however, neurons comprising the rhythm-generating kernel have remained elusive. Here, we identify an ipsilaterally projecting excitatory interneuron population, marked by the expression of Shox2 that overlaps partially with V2a interneurons. Optogenetic silencing or blocking synaptic output of Shox2 interneurons (INs) in transgenic mice perturbed rhythm without an effect on pattern generation, whereas ablation of the Shox2 IN subset coinciding with the V2a population was without effect. Most Shox2 INs are rhythmically active during locomotion and analysis of synaptic connectivity showed that Shox2 INs contact other Shox2 INs, commissural neurons, and motor neurons, with preference for flexor motor neurons. Our findings focus attention on a subset of Shox2 INs that appear to participate in the rhythm-generating kernel for spinal locomotion.
Neural networks in the spinal cord known as central pattern generators produce the sequential activation of muscles needed for locomotion. The overall locomotor network architectures in limbed vertebrates have been much debated, and no consensus exists as to how they are structured. Here, we use optogenetics to dissect the excitatory and inhibitory neuronal populations and probe the organization of the mammalian central pattern generator. We find that locomotor-like rhythmic bursting can be induced unilaterally or independently in flexor or extensor networks. Furthermore, we show that individual flexor motor neuron pools can be recruited into bursting without any activity in other nearby flexor motor neuron pools. Our experiments differentiate among several proposed models for rhythm generation in the vertebrates and show that the basic structure underlying the locomotor network has a distributed organization with many intrinsically rhythmogenic modules.channelrhodopsin-2 | halorhodopsin | motor neurons | interneurons S pinal cord networks that drive and coordinate walking are, to a large extent, innate. Even in species that do not walk at birth, such as rodents and humans, the networks that generate walking are already present (1, 2). The early development of functional locomotor networks has been exploited and studied in the neonatal rodent spinal cord in vitro preparation in which locomotor-like activity can be induced pharmacologically or by electrical activation of descending or afferent fibers (3-6). The mammalian locomotor networks have also been studied by using the adult cat where locomotor-like activity similarly can be induced pharmacologically or electrically (7-9). A general notion from these studies is that forelimb and hindlimb locomotion are controlled by independent limb-controlling circuits (10) and that rhythm-generating excitatory neurons, and pattern-generating neurons, interact to produce the coordinated motor output (11)(12)(13)(14). The network layout within these limb-controlling circuits has, however, been debated. A number of conceptual models have been advanced. The classical half-center model asserts that flexor and extensor bursting is generated by two reciprocally coupled half-centers driving all flexors and extensors (8, 15). The flexor burst generator model is asymmetric and consists of a flexor burst generator that provides active excitation of flexor motor neurons and inhibition of extensor motor neurons that are otherwise tonically active (14,16,17). In response to evidence that the central pattern generator (CPG) could produce a more complex motor output than just a mere flexor-extensor alternation (9), the unit burst generator (UBG) model was proposed (18). According to this theory, separate modules can generate a rhythm in close muscle synergies and are distributed around each joint (18,19), or in the swimming network in each hemisegment (20). The UBGs therefore generate a local rhythmic activity that during locomotion will be recruited so that they form an interconnected n...
Central pattern generators (CPGs) are spinal neuronal networks required for locomotion. Glutamatergic neurons have been implicated as being important for intrinsic rhythm generation in the CPG and for the command signal for initiating locomotion, although this has not been demonstrated directly. We used a newly generated vesicular glutamate transporter 2-channelrhodopsin2-yellow fluorescent protein (Vglut2-ChR2-YFP) mouse to directly examine the functional role of glutamatergic neurons in rhythm generation and initiation of locomotion. This mouse line expressed ChR2-YFP in the spinal cord and hindbrain. ChR2-YFP was reliably expressed in Vglut2-positive cells and YFP-expressing cells could be activated by light. Photo-stimulation of either the lumbar spinal cord or the caudal hindbrain was sufficient to both initiate and maintain locomotor-like activity. Our results indicate that glutamatergic neurons in the spinal cord are critical for initiating or maintaining the rhythm and that activation of hindbrain areas containing the locomotor command regions is sufficient to directly activate the spinal locomotor network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.