SummaryPutrescine and polyamines are produced by two alternative pathways in plants. One pathway starts with the enzyme arginine decarboxylase; the other with ornithine decarboxylase. The authors developed an in vivo screening strategy to identify mutants with low levels of arginine decarboxylase activity. The screen requires both a primary screen of the M2 generation and a secondary screen of the M3 generation. The method used was to screen 15 000 EMS-mutagenized M2 seedlings for low levels of arginine decarboxylase (ADC) activity and identified seven mutants that fall into two complementation groups. These mutants have from 20% to 50% of wild-type enzyme activity. Morphological alterations common among the mutants include increased levels of lateral root branching. The authors obtained a double mutant combining the alleles with the lowest activities from the two complementation groups; this has lower ADC enzyme activity and putrescine levels than either of the single mutants. The double mutant has highly kinked roots that form a tight cluster; it also has narrower leaves, sepals, and petals than either single mutant or wild-type, and delayed flowering. These results suggest there may be more than one ADC gene in Arabidopsis, and that ADC and polyamine levels play roles in root meristem function and in lateral growth of leafhomolog organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.