Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of how A. fumigatus growth is controlled in the respiratory tract is developing, but still limited. Alveolar macrophages, lung resident macrophages, and airway epithelial cells constitute the first lines of defense against inhaled A. fumigatus conidia. Subsequently, neutrophils and inflammatory CCR2+ monocytes are recruited to the respiratory tract to prevent fungal growth. However, the mechanism of neutrophil and macrophage recruitment to the respiratory tract after A. fumigatus exposure remains an area of ongoing investigation. Here we show that A. fumigatus pulmonary challenge induces expression of the inflammasome-dependent cytokines IL-1β and IL-18 within the first 12 hours, while IL-1α expression continually increases over at least the first 48 hours. Strikingly, Il1r1-deficient mice are highly susceptible to pulmonary A. fumigatus challenge exemplified by robust fungal proliferation in the lung parenchyma. Enhanced susceptibility of Il1r1-deficient mice correlated with defects in leukocyte recruitment and anti-fungal activity. Importantly, IL-1α rather than IL-1β was crucial for optimal leukocyte recruitment. IL-1α signaling enhanced the production of CXCL1. Moreover, CCR2+ monocytes are required for optimal early IL-1α and CXCL1 expression in the lungs, as selective depletion of these cells resulted in their diminished expression, which in turn regulated the early accumulation of neutrophils in the lung after A. fumigatus challenge. Enhancement of pulmonary neutrophil recruitment and anti-fungal activity by CXCL1 treatment could limit fungal growth in the absence of IL-1α signaling. In contrast to the role of IL-1α in neutrophil recruitment, the inflammasome and IL-1β were only essential for optimal activation of anti-fungal activity of macrophages. As such, Pycard-deficient mice are mildly susceptible to A. fumigatus infection. Taken together, our data reveal central, non-redundant roles for IL-1α and IL-1β in controlling A. fumigatus infection in the murine lung.
Humans have three functioning genes that code for copper-containing amine oxidases. The product of the AOC1 gene is a so-called diamine oxidase (hDAO), named for its substrate preference for diamines, particularly histamine. hDAO has been cloned and expressed in insect cells and the structure of the native enzyme determined by X-ray crystallography to a resolution of 1.8 Å. The homodimeric structure has the archetypal amine oxidase fold. Two active sites, one in each subunit, are characterized by the presence of a copper ion and a topaquinone residue formed by the post-translational modification of a tyrosine. Although hDAO shares 37.9 % sequence identity with another human copper amine oxidase, semicarbazide sensitive amine oxidase or vascular adhesion protein-1, its substrate binding pocket and entry channel are distinctly different in accord with the different substrate specificities. The structures of two inhibitor complexes of hDAO, berenil and pentamidine, have been refined to resolutions of 2.1 Å and 2.2 Å, respectively. They bind non-covalently in the active site channel. The inhibitor binding suggests that an aspartic acid residue, conserved in all diamine oxidases but absent from other amine oxidases, is responsible for the diamine specificity by interacting with the second amino group of preferred diamine substrates.
Influenza A virus (IAV) is a major respiratory pathogen of both humans and animals. The lung is protected from pathogens by alveolar epithelial cells, tissue resident alveolar macrophages, dendritic cells, and mast cells. The role of alveolar epithelial cells, endothelial cells, and alveolar macrophages during IAV infection has been previously studied. Here we address the role of mast cells during IAV infection. Respiratory infection with A/WSN/33 causes significant disease and immunopathology in C57BL/6 mice, but not B6.Cg-KitW-sh mice that lack mast cells. During in vitro co-culture, A/WSN/33 caused mast cells to release histamine, secrete cytokines and chemokines, and produce leukotrienes. Moreover, when mast cells were infected with IAV, the virus did not replicate within mast cells. Importantly, human H1N1, H3N2, and influenza B virus isolates could also activate mast cells in vitro. Mast cell production of cytokines and chemokines occurs in a RIG-I/MAVS-dependent mechanism; in contrast, histamine production occurred through a RIG-I/MAVS-independent mechanism. Our data highlight that following IAV infection the response of mast cells is controlled by multiple receptors. In conclusion, we have identified a unique inflammatory cascade activated during IAV infection that could potentially be targeted to limit morbidity following IAV infection.
Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of how immune competent hosts maintain control of fungal infections while constantly being exposed to fungi is rapidly emerging. It is known that timely neutrophil recruitment to and activation in the lungs is critical to the host defense against development of invasive pulmonary aspergillosis, but the inflammatory sequelae necessary remains to be fully defined. Here, we show that 5-Lipoxygenase (5-LO) and Leukotriene B4 (LTB4) are critical for leukocyte recruitment and resistance to pulmonary A. fumigatus challenge in a fungal-strain-dependent manner. 5-LO activity was needed in radiosensitive cells for an optimal anti-fungal response and in vivo LTB4 production was at least partially dependent on myeloid-derived hypoxia inducible factor-1α. Overall, this study reveals a role for host-derived leukotriene synthesis in innate immunity to A. fumigatus.
The structure of Pichia pastoris lysyl oxidase (PPLO) in a new crystal form has been refined at 1.23 Angstrom resolution. PPLO, a copper amine oxidase (CuAO) with a 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor, differs from most other members of the CuAO enzyme family in having the ability to oxidize the side chain of lysine residues in a polypeptide. In the asymmetric unit of the crystals, the structure analysis has located residues 43-779 of the polypeptide chain, seven carbohydrate residues, the active-site Cu atom, an imidazole molecule bound at the active site, two buried Ca(2+) ions, five surface Mg(2+) ions, five surface Cl(-) ions and 1045 water molecules. The crystallographic residuals are R = 0.112 and R(free) = 0.146. The TPQ cofactor and several other active-site residues are poorly ordered, in contrast to the surrounding well ordered structure. A covalent cross-link is observed between two lysine residues, Lys778 and Lys66. The cross-link is likely to have been formed by the oxidation of Lys778 followed by a spontaneous reaction with Lys66. The link is modelled as dehydrolysinonorleucine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.