Funding information Natera, Inc.Single-nucleotide polymorphism (SNP)-based non-invasive prenatal testing (NIPT) can currently predict a subset of submicroscopic abnormalities associated with severe clinical manifestations.We retrospectively analyzed the performance of SNP-based NIPT in 80 449 referrals for 22q11.2 deletion syndrome and 42 326 referrals for 1p36, cri-du-chat, Prader-Willi, and Angelman microdeletion syndromes over a 1-year period, and compared the original screening protocol with a revision that reflexively sequenced high-risk calls at a higher depth of read. The prevalence of these microdeletion syndromes was also estimated in the referral population.The positive predictive value of the original test was 15.7% for 22q11.2 deletion syndrome, and 5.2% for the other 4 disorders combined. With the revised protocol, these values increased to 44.2% for 22q11.2 and 31.7% for the others. The 0.33% false-positive rate (FPR) for 22q11.2 deletion syndrome decreased to 0.07% with the revised protocol. Similarly, the FPR for the other 4 disorders combined decreased from 0.56% to 0.07%. Minimal prevalences were estimated to be 1 in 1255 for 22q11.2 deletion syndrome and 1 in 1464 for 1p36, cri-du-chat, and Angelman syndromes combined. Our results show that these microdeletions are relatively common in the referral population, and that the performance of SNP-based NIPT is improved with high-depth resequencing.
We analyzed maternal plasma cell-free DNA samples from twin pregnancies in a prospective blinded study to validate a single-nucleotide polymorphism (SNP)-based non-invasive prenatal test (NIPT) for zygosity, fetal sex, and aneuploidy. Zygosity was evaluated by looking for either one or two fetal genome complements, fetal sex was evaluated by evaluating Y-chromosome loci, and aneuploidy was assessed through SNP ratios. Zygosity was correctly predicted in 100% of cases (93/93; 95% confidence interval (CI) 96.1%–100%). Individual fetal sex for both twins was also called with 100% accuracy (102/102; 95% weighted CI 95.2%–100%). All cases with copy number truth were also correctly identified. The dizygotic aneuploidy sensitivity was 100% (10/10; 95% CI 69.2%–100%), and overall specificity was 100% (96/96; 95% weighted CI, 94.8%–100%). The mean fetal fraction (FF) of monozygotic twins (n = 43) was 13.0% (standard deviation (SD), 4.5%); for dizygotic twins (n = 79), the mean lower FF was 6.5% (SD, 3.1%) and the mean higher FF was 8.1% (SD, 3.5%). We conclude SNP-based NIPT for zygosity is of value when chorionicity is uncertain or anomalies are identified. Zygosity, fetal sex, and aneuploidy are complementary evaluations that can be carried out on the same specimen as early as 9 weeks’ gestation.
BackgroundAccess to timely and accurate diagnostic tests has a significant impact in the management of diseases of global concern such as malaria. While molecular diagnostics satisfy this need effectively in developed countries, barriers in technology, reagent storage, cost and expertise have hampered the introduction of these methods in developing countries. In this study a simple, lab-on-chip PCR diagnostic was created for malaria that overcomes these challenges.MethodsThe platform consists of a disposable plastic chip and a low-cost, portable, real-time PCR machine. The chip contains a desiccated hydrogel with reagents needed for Plasmodium specific PCR. Chips can be stored at room temperature and used on demand by rehydrating the gel with unprocessed blood, avoiding the need for sample preparation. These chips were run on a custom-built instrument containing a Peltier element for thermal cycling and a laser/camera setup for amplicon detection.ResultsThis diagnostic was capable of detecting all Plasmodium species with a limit of detection for Plasmodium falciparum of 2 parasites/μL of blood. This exceeds the sensitivity of microscopy, the current standard for diagnosis in the field, by ten to fifty-fold. In a blind panel of 188 patient samples from a hyper-endemic region of malaria transmission in Uganda, the diagnostic had high sensitivity (97.4%) and specificity (93.8%) versus conventional real-time PCR. The test also distinguished the two most prevalent malaria species in mixed infections, P. falciparum and Plasmodium vivax. A second blind panel of 38 patient samples was tested on a streamlined instrument with LED-based excitation, achieving a sensitivity of 96.7% and a specificity of 100%.ConclusionsThese results describe the development of a lab-on-chip PCR diagnostic from initial concept to ready-for-manufacture design. This platform will be useful in front-line malaria diagnosis, elimination programmes, and clinical trials. Furthermore, test chips can be adapted to detect other pathogens for a differential diagnosis in the field. The flexibility, reliability, and robustness of this technology hold much promise for its use as a novel molecular diagnostic platform in developing countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.