Mutations in COQ4 cause an autosomal recessive lethal neonatal mitochondrial encephalomyopathy associated with a founder mutation in the Ashkenazi Jewish population. The early mortality in our cohort suggests that COQ4 is an essential component of the multisubunit complex required for CoQ(10) biosynthesis.
Among strains of Haemophilus influenzae, the ability to catabolize tryptophan (as detected by indole production) varies and is correlated with pathogenicity. Tryptophan catabolism is widespread (70 to 75%) among harmless respiratory isolates but is nearly universal (94 to 100%) among strains causing serious disease, including meningitis. As a first step in investigating the relationship between tryptophan catabolism and virulence, we have identified genes in pathogenic H. influenzae which are homologous to the tryptophanase (tna) operon of Escherichia coli. The tna genes are located on a 3.1-kb fragment betweennlpD and mutS in the H. influenzaetype b (Eagan) genome, are flanked by 43-bp direct repeats of an uptake signal sequence downstream from nlpD, and appear to have been inserted as a mobile unit within this sequence. The organization of this insertion is reminiscent of pathogenicity islands. Thetna cluster is found at the same map location in all indole-positive strains of H. influenzae surveyed and is absent from reference type d and e genomes. In contrast to H. influenzae, most other Haemophilus species lacktna genes. Phylogenetic comparisons suggest that thetna cluster was acquired by intergeneric lateral transfer, either by H. influenzae or a recent ancestor, and thatE. coli may have acquired its tnaA gene from a related source. Genomes of virulent H. influenzae resemble those of pathogenic enterics in having an island of laterally transferred DNA next to mutS.
HIV fusion is mediated by a conformational transition in which the C-terminal region (HR2) of gp41 interacts with the N-terminal region (HR1) to form a six-helix bundle. Peptides derived from the HR1 form a well-characterized, trimeric coiled-coil bundle in the presence of HR2 peptides, but there is little structural information on the isolated HR1 trimer. Using protein design, we have designed synthetic HR1 peptides that form soluble, thermostable HR1 trimers. In vitro binding of HR2 peptides to the engineered trimer suggests that the design strategy has not significantly impacted the ability to form the six-helix bundle. The peptides have enhanced antiviral activity compared to wild type, with up to 30-fold greater potency against certain viral isolates. In vitro passaging was used to generate HR1-resistant virus and the observed resistance mutations map to the HR2 region of gp41, demonstrating that the peptides block the fusion process by binding to the viral HR2 domain. Interestingly, the activity of the HR2 fusion inhibitor, enfuvirtide (ENF), against these resistant viruses is maintained or improved up to fivefold. The 1.5 Å crystal structure of one of these designs has been determined, and we show that the isolated HR1 is very similar to the conformation of the HR1 in the six-helix bundle. These results provide an initial model of the pre-fusogenic state, are attractive starting points for identifying novel fusion inhibitors, and offer new opportunities for developing HIV therapeutics based on HR1 peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.