The plant pathogen Erwinia pyrifoliae has been classified as a separate species from Erwinia amylovora based in part on differences in molecular properties. In this study, these and other molecular properties were examined for E. pyrifoliae and for additional strains of E. amylovora, including strains from brambles (Rubus spp.). The nucleotide composition of the internal transcribed spacer (ITS) region was determined for six of the seven 16S-23S rRNA operons detected in these species with a 16S rRNA gene probe. Each species contained four operons with a tRNA Glu gene and two with tRNA Ile and tRNA Ala genes, and analysis of the operons from five strains of E. amylovora indicated a high degree of ITS variability among them. One tRNA Glu -containing operon from E. pyrifoliae Ep1/96 was identical to one in E. amylovora Ea110, but three tRNA Glu operons and two tRNA Ile and tRNA Ala operons from E. pyrifoliae contained unique nucleotide changes. When groEL sequences were used for species-specific identification, E. pyrifoliae and E. amylovora were the closest phylogenetic relatives among a set of 12 bacterial species. The placement of E. pyrifoliae distinct from E. amylovora corroborated molecular hybridization data indicating low DNA-DNA similarity between them. Determination of the nucleotide sequence of plasmid pEP36 from E. pyrifoliae Ep1/96 revealed a number of presumptive genes that matched genes previously found in pEA29 from E. amylovora and similar organization for the genes and origins of replication. Also, pEP36 and pEA29 were incompatible with clones containing the reciprocal origin regions. Finally, the ColE1-like plasmid pEP2.6 from strain Ep1/96 contained sequences found in small plasmids in E. amylovora strains IL-5 and IH3-1.There are two subgroups of the fire blight pathogen Erwinia amylovora based on host range: one is able to cause disease on apple, pear, and related fruits, and the other is able to cause disease on raspberry, blackberry, and other bramble (Rubus) species. Although these organisms exhibit host specificity, they are considered identical species because DNA-DNA homology was high between the two subgroups (10). A bacterium isolated in Korea causes a shoot blight resembling symptoms of fire blight in shoots of Asian pear (23) and recently was designated a separate species, Erwinia pyrifoliae (21). It was differentiated from E. amylovora based on low relatedness (40 to 45%) in DNA-DNA similarity experiments; sequence divergence in the 16S-23S rRNA intergenic transcribed spacer (ITS) regions (21); and the number and size of bands in restriction studies of its plasmids (35).The taxonomic placement of E. pyrifoliae strain Ep1/96 within the genus Erwinia was based on high 16S rRNA gene sequence identity to several species in the genus, including E. amylovora. Strain Ep1/96 was classified as a new species, E. pyrifoliae, in part because of its phylogenetic distance from E. amylovora strain Ea1/79 when sequences for single operons of the 16S-23S rRNA ITS region from the two bacteria were co...
Acibenzolar-S-methyl (ASM, Actigard 50 WG), a synthetic inducer of systemic acquired resistance (SAR) and pathogenesis-related (PR) proteins, was evaluated for the control of fire blight on apple trees in the field and for PR protein gene expression in apple seedlings in the greenhouse. Expression of putative genes related to SAR induction was elevated in ASM-treated apple seedlings 2 to 7 days after treatment; levels of PR-1 and PR-8 RNA were increased 10-fold and PR-2 RNA was increased 100-fold in ASM-treated seedlings over levels in untreated seedlings. Spurs and shoots on Jonathan trees sprayed with ASM at 75 mg a.i./liter at pink and at weekly intervals thereafter had significantly less fire blight than untreated trees, both from natural infection and following artificial inoculation with the pathogen. Less fire blight was observed on trees sprayed weekly with ASM than on trees sprayed biweekly. The severity of fire blight on inoculated shoots of Fuji apple decreased with increasing rates of ASM (0 to 300 mg a.i./liter), and ASM combined with streptomycin showed enhanced activity over ASM at 75 mg a.i./liter alone. In general, ASM was not superior to streptomycin for fire blight control, but integrating a weekly schedule of ASM, preferably at 150 mg a.i./liter, with a schedule of streptomycin designed for blossom blight control appears promising for overall improvement in fire blight control.
Four Erwinia strains, originally isolated in Japan from pear trees with bacterial shoot blight symptoms, were analyzed to determine their genetic relationship with Erwinia amylovora and E. pyrifoliae. When genomes were characterized with amplified fragment length polymorphism markers and by comparative groEL sequence analysis, the Japanese Erwinia sp. and South Korean E. pyrifoliae strains were placed in the same group, which was phylogenetically distinct from a group of 15 strains of E. amylovora. Sequencing of the 29,593-bp plasmid pEJ30 from Erwinia strain Ejp556 revealed that this plasmid was nearly identical to plasmid pEP36 from E. pyrifoliae and was closely related to the nontransferable ubiquitous plasmid pEA29 from E. amylovora. Twenty-one presumptive genes and their order in pEP36 were highly conserved in pEJ30; however, transposon Tn5394, which was present in pEP36, was not found in pEJ30. Short-sequence DNA repeats were conserved between pEJ30 and pEP36, and were different from short-sequence repeats in pEA29. Despite base-pair mismatches, primer pairs used in pEA29 polymerase chain reaction assays for E. amylovora amplified plasmid DNA from the Japanese Erwinia Ejp556 and Ejp562. Like E. pyrifoliae and a few strains of E. amylovora, Japanese Erwinia Ejp617 contained plasmids related to E. pyrifoliae ColE1-related plasmid pEP2.6. Based on these genetic analyses, we conclude that the Erwinia pathogen of pear in Japan is closely related to E. pyrifoliae and that both of these pathogens are demonstrably distinct from E. amylovora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.