Graphene quantum dots (GQDs) have recently been employed in various fields including medicine as antioxidants, primarily because of favorable biocompatibility in comparison to common inorganic quantum dots, although the structural features that lead to the biological activities of GQDs are poorly understood. Here, we report that coal-derived GQDs and their poly(ethylene glycol)-functionalized derivatives serve as efficient antioxidants, and we evaluate their electrochemical, chemical, and in vitro biological activities.
Therapy for intracerebral hemorrhage (ICH) remains elusive, in part dependent on the severity of the hemorrhage itself as well as multiple deleterious effects of blood and its breakdown products such as hemin and free iron. While oxidative injury and genomic damage have been seen following ICH, the details of this injury and implications remain unclear. Here, we discovered that, while free iron produced mostly reactive oxygen species (ROS)-related single-strand DNA breaks, hemin unexpectedly induced rapid and persistent nuclear and mitochondrial double-strand breaks (DSBs) in neuronal and endothelial cell genomes and in mouse brains following experimental ICH comparable to that seen with γ radiation and DNA-complexing chemotherapies. Potentially as a result of persistent DSBs and the DNA damage response, hemin also resulted in senescence phenotype in cultured neurons and endothelial cells. Subsequent resistance to ferroptosis reported in other senescent cell types was also observed here in neurons. While antioxidant therapy prevented senescence, cells became sensitized to ferroptosis. To address both senescence and resistance to ferroptosis, we synthesized a modified, catalytic, and rapidly internalized carbon nanomaterial, poly(ethylene glycol)-conjugated hydrophilic carbon clusters (PEG-HCC) by covalently bonding the iron chelator, deferoxamine (DEF). This multifunctional nanoparticle, DEF-HCC-PEG, protected cells from both senescence and ferroptosis and restored nuclear and mitochondrial genome integrity in vitro and in vivo. We thus describe a potential molecular mechanism of hemin/iron-induced toxicity in ICH that involves a rapid induction of DSBs, senescence, and the consequent resistance to ferroptosis and provide a mechanistic-based combinatorial therapeutic strategy.
Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Complications in pediatric regional anesthesia are rare, so a large sample size is necessary to quantify risk. The Pediatric Regional Anesthesia Network contains data on more than 100,000 blocks administered at more than 20 children’s hospitals. This study analyzed the risk of major complications associated with regional anesthesia in children. Methods This is a prospective, observational study of routine clinical practice. Data were collected on every regional block placed by an anesthesiologist at participating institutions and were uploaded to a secure database. The data were audited at multiple points for accuracy. Results There were no permanent neurologic deficits reported (95% CI, 0 to 0.4:10,000). The risk of transient neurologic deficit was 2.4:10,000 (95% CI, 1.6 to 3.6:10,000) and was not different between peripheral and neuraxial blocks. The risk of severe local anesthetic systemic toxicity was 0.76:10,000 (95% CI, 0.3 to 1.6:10,000); the majority of cases occurred in infants. There was one epidural abscess reported (0.76:10,000, 95% CI, 0 to 4.8:10,000). The incidence of cutaneous infections was 0.5% (53:10,000, 95% CI, 43 to 64:10,000). There were no hematomas associated with neuraxial catheters (95% CI, 0 to 3.5:10,000), but one epidural hematoma occurred with a paravertebral catheter. No additional risk was observed with placing blocks under general anesthesia. The most common adverse events were benign catheter-related failures (4%). Conclusions The data from this study demonstrate a level of safety in pediatric regional anesthesia that is comparable to adult practice and confirms the safety of placing blocks under general anesthesia in children.
IntroductionWhile oxidative stress can be measured during transient cerebral ischemia, antioxidant therapies for ischemic stroke have been clinically unsuccessful. Many antioxidants are limited in their range and/or capacity for quenching radicals and can generate toxic intermediates overwhelming depleted endogenous protection. We developed a new antioxidant class, 40 nm × 2 nm carbon nanoparticles, hydrophilic carbon clusters, conjugated to poly(ethylene glycol) termed PEG-HCCs. These particles are high-capacity superoxide dismutase mimics, are effective against hydroxyl radical, and restore the balance between nitric oxide and superoxide in the vasculature. Here, we report the effects of PEG-HCCs administered during reperfusion after transient middle cerebral artery occlusion (tMCAO) by suture in the rat under hyperglycemic conditions. Hyperglycemia occurs in one-third of stroke patients and worsens clinical outcome. In animal models, this worsening occurs largely by accelerating elaboration of reactive oxygen species (ROS) during reperfusion.MethodsPEG-HCCs were studied for their protective ability against hydrogen peroxide in b.End3 brain endothelial cell line and E17 primary cortical neuron cultures. In vivo, hyperglycemia was induced by streptozotocin injection 2 days before tMCAO. 58 Male Sprague-Dawley rats were analyzed. They were injected IV with PBS or PEG-HCCs (4 mg/kg 2×) at the time of recanalization after either 90- or 120-min occlusion. Rats were survived for up to 3 days, and infarct volume characteristics and neurological functional outcome (modified Bederson Score) were assessed.ResultsPEG-HCCs were protective against hydrogen peroxide in both culture models. In vivo improvement was found after PEG-HCCs with 90-min ischemia with reduction in infarct size (42%), hemisphere swelling (46%), hemorrhage score (53%), and improvement in Bederson score (70%) (p = 0.068–0.001). Early high mortality in the 2-h in the PBS control group precluded detailed analysis, but a trend was found in improvement in all factors, e.g., reduction in infarct volume (48%; p = 0.034) and a 56% improvement in Bederson score (p = 0.055) with PEG-HCCs.ConclusionThis nano-antioxidant showed some improvement in several outcome measures in a severe model of tMCAO when administered at a clinically relevant time point. Long-term studies and additional models are required to assess potential for clinical use, especially for patients hyperglycemic at the time of their stroke, as these patients have the worst outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.