The BB (BioBreeding) rat is one of the best models of spontaneous autoimmune diabetes and is used to study non-MHC loci contributing to Type 1 diabetes. Type 1 diabetes in the diabetes-prone BB (BBDP) rat is polygenic, dependent upon mutations at several loci.Iddm1, on chromosome 4, is responsible for a lymphopenia (lyp) phenotype and is essential to diabetes. In this study, we report the positional cloning of theIddm1/lyp locus. We show that lymphopenia is due to a frameshift deletion in a novel member (Ian5) of the Immune-Associated Nucleotide (IAN)-related gene family, resulting in truncation of a significant portion of the protein. This mutation was absent in 37 other inbred rat strains that are nonlymphopenic and nondiabetic. The IAN gene family, lying within a tight cluster on rat chromosome 4, mouse chromosome 6, and human chromosome 7, is poorly characterized. Some members of the family have been shown to be expressed in mature T cells and switched on during thymic T-cell development, suggesting thatIan5 may be a key factor in T-cell development. The lymphopenia mutation may thus be useful not only to elucidate Type 1 diabetes, but also in the function of the Ian gene family as a whole.[Sequence data reported in this paper has been deposited in GenBank and assigned the following accession nos:AF517674, AF517675, AF517676, and AF517677. Supplemental material is available online at http://depts.washington.edu/rhwlab/ and http:www.genome.org. ] The following individuals and institutions kindly provided reagents, samples, or unpublished information as indicated in the paper: K. Matsumoto and the Sir Frederick Banting Research Centre.
quence analysis of the complete mitochondrial DNA in 10 commonly used inbred rat strains. Am J Physiol Cell Physiol 291: C1183-C1192, 2006. First published July 19, 2006 doi:10.1152/ajpcell.00234.2006.-Rat remains a major biomedical model system for common, complex diseases. The rat continues to gain importance as a model system with the completion of its full genomic sequence. Although the genomic sequence has generated much interest, only three complete sequences of the rat mitochondria exist. Therefore, to increase the knowledge of the rat genome, the entire mitochondrial genomes (16,307-16,315 bp) from 10 inbred rat strains (that are standard laboratory models around the world) and 2 wild rat strains were sequenced. We observed a total of 195 polymorphisms, 32 of which created an amino acid change (nonsynonymous substitutions) in 12 of the 13 protein coding genes within the mitochondrial genome. There were 11 single nucleotide polymorphisms within the tRNA genes, six in the 12S rRNA, and 12 in the 16S rRNA including 3 insertions/deletions. We found 14 single nucleotide polymorphisms and 2 insertion/deletion polymorphisms in the D-loop. The inbred rat strains cluster phylogenetically into three distinct groups. The wild rat from Tokyo grouped closely with five inbred strains in the phylogeny, whereas the wild rat from Milwaukee was not closely related to any inbred strain. These data will enable investigators to rapidly assess the potential impact of the mitochondria in these rats on the physiology and the pathophysiology of phenotypes studied in these strains. Moreover, these data provide information that may be useful as new animal models, which result in novel combinations of nuclear and mitochondrial genomes, are developed. genome; mitochondria MITOCHONDRIA ARE THE ONLY organelles (other than the nucleus) with their own DNA, which is maternally inherited (31, 36). The mammalian mitochondrial DNA (mtDNA) is a circular, double-stranded DNA that lacks introns and has only ϳ7% noncoding sequences (23) in contrast to the genomic DNA. The mtDNA encodes 37 genes, including 13 protein-coding genes that, in conjunction with subunits encoded by the nuclear genome, form the electron transport chain, the primary ATP producer for the cell. Also included within these 37 coding genes are 22 tRNA genes whose function is to transport amino acids to the ribosome and match them to the codons of the mRNAs thus facilitating incorporation of amino acids into the growing polypeptide during translation. The final 2 genes are rRNA genes. The D-loop or control region, although noncoding, contains binding sites for two transcription factors, three conserved sequence blocks (CSBs) associated with initiation of replication and the loop strand termination associated sequences (9,21,23,61
The laboratory rat is a major model organism for systems biology. To complement the cornucopia of physiological and pharmacological data generated in the rat, a large genomic toolset has been developed, culminating in the release of the rat draft genome sequence. The rat draft sequence used a variety of assembly packages, as well as data from the Radiation Hybrid (RH) map of the rat as part of their validation. As part of the Rat Genome Project, we have been building a high-density RH map to facilitate data integration from multiple maps and now to help validate the genome assembly. By incorporating vectors from our lab and several other labs, we have doubled the number of simple sequence length polymorphisms (SSLPs), genes, expressed sequence tags (ESTs), and sequence-tagged sites (STSs) compared to any other genome-wide rat map, a total of 24,437 elements. During the process, we also identified a novel approach for integrating the RH placement results from multiple maps. This new integrated RH map contains approximately 10 RH-mapped elements per Mb on the genome assembly, enabling the RH maps to serve as a scaffold for a variety of data visualization tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.