The metastable helium line at 1083 nm can be used to probe the extended upper atmospheres of close-in exoplanets and thus provide insight into their atmospheric mass loss, which is likely to be significant in sculpting their population. We used an ultra-narrow band filter centered on this line to observe two transits of the low-density gas giant HAT-P-18b, using the 200″ Hale Telescope at Palomar Observatory, and report the detection of its extended upper atmosphere. We constrain the excess absorption to be 0.46% ± 0.12% in our 0.635 nm bandpass, exceeding the transit depth from the Transiting Exoplanet Survey Satellite (TESS) by 3.9σ. If we fit this signal with a 1D Parker wind model, we find that it corresponds to an atmospheric mass loss rate between-+-M 8.3 10 1.9 2.8 5 J Gyr −1 and-+-M 2.63 10 0.64 0.46 3 J Gyr −1 for thermosphere temperatures ranging from 4000 K to 13,000 K, respectively. With a J magnitude of 10.8, this is the faintest system for which such a measurement has been made to date, demonstrating the effectiveness of this approach for surveying mass loss on a diverse sample of close-in gas giant planets. Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Narrow band photometry (1088); Transits (1711); Exoplanets (498); Extrasolar gaseous giant planets (509); Extrasolar gaseous planets (2172)
Transit surveys indicate that there is a deficit of Neptune-sized planets on close-in orbits. If this “Neptune desert” is entirely cleared out by atmospheric mass loss, then planets at its upper edge should only be marginally stable against photoevaporation, exhibiting strong outflow signatures in tracers like the metastable helium triplet. We test this hypothesis by carrying out a 12-night photometric survey of the metastable helium feature with Palomar/WIRC, targeting seven gas-giant planets orbiting K-type host stars. Eight nights of data are analyzed here for the first time along with reanalyses of four previously published data sets. We strongly detect helium absorption signals for WASP-69b, HAT-P-18b, and HAT-P-26b; tentatively detect signals for WASP-52b and NGTS-5b; and do not detect signals for WASP-177b and WASP-80b. We interpret these measured excess absorption signals using grids of Parker wind models to derive mass-loss rates, which are in good agreement with predictions from the hydrodynamical outflow code ATES for all planets except WASP-52b and WASP-80b, where our data suggest that the outflows are much smaller than predicted. Excluding these two planets, the outflows for the rest of the sample are consistent with a mean energy-limited outflow efficiency of ε = 0.41 − 0.13 + 0.16 . Even when we make the relatively conservative assumption that gas-giant planets experience energy-limited outflows at this efficiency for their entire lives, photoevaporation would still be too inefficient to carve the upper boundary of the Neptune desert. We conclude that this feature of the exoplanet population is a pristine tracer of giant planet formation and migration mechanisms.
Transit surveys indicate that there is a deficit of Neptune-sized planets on close-in orbits. If this "Neptune desert" is entirely cleared out by atmospheric mass loss, then planets at its upper edge should only be marginally stable against photoevaporation, exhibiting strong outflow signatures in tracers like the metastable helium triplet. We test this hypothesis by carrying out a 12-night photometric survey of the metastable helium feature with Palomar/WIRC, targeting seven gas-giant planets orbiting K-type host stars. Eight nights of data are analyzed here for the first time along with reanalyses of four previously-published datasets. We strongly detect helium absorption signals for WASP-69b, HAT-P-18b, and HAT-P-26b; tentatively detect signals for WASP-52b and NGTS-5b; and do not detect signals for WASP-177b and WASP-80b. We interpret these measured excess absorption signals using grids of isothermal Parker wind models to derive mass-loss rates, which are typically around 10 10 − 10 11 g s −1 . Our empirically constrained mass-loss rates are in good agreement with predictions from the 1D hydrodynamical outflow code ATES for all planets except WASP-52b and WASP-80b, where our data suggest that the outflows are much smaller than predicted. Excluding these two planets, the outflows for the rest of the sample are consistent with a mean energy-limited outflow efficiency of ε = 0.41 +0.16 −0.13 . Even when we make the relatively conservative assumption that gas-giant planets experience energy-limited outflows at this efficiency for their entire lives, photoevaporation would still be too inefficient to carve the upper boundary of the Neptune desert. We conclude that this feature of the exoplanet population is a pristine tracer of giant planet formation and migration mechanisms.
Hot Jupiters are exoplanets that are Jupiter-like in mass and size and orbit their host stars in very close proximity. Due to their unique physical properties (i.e., their large radii and small separation from their host stars), they have high transit probabilities establishing them as ideal candidates to study the atmospheric escape of close-in exoplanets. Their short orbital periods expose them to increased irradiation from their host stars, which causes them to lose their atmospheres. The helium (He I) 1083 nm line offers insight into the atmospheric future trips (.i.e., our road trip and rogue takes on Japan)! To my family: Tom, thank you for always listening to me talk about my research over and over again. Your partnership has gotten me through the roughest patches and I cannot thank you enough for always being there for me. Kuya Chris, thank you for never failing to make me laugh, and reminding me not to take everything so seriously. Mom, thank you for pushing me to be the best that I can be everyday. I hope that I am making you proud. I am thankful to all of you for your constant support throughout every endeavor I pursue. I love you all so much.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.