Telerehabilitation robotic devices can be used as a tool to extend effective, evidence-based and specialized rehabilitation services for upper and lower limb rehabilitation to rural Veterans with poor access to care. Implications for Rehabilitation Participants whose formal therapy services had ended either because they had exhausted their benefits or because traveling to outpatient therapy was too cumbersome due to distance were able to perform therapeutic activities in the home daily (or at least multiple times per week). Participants who were still receiving formal therapy services either in-home or in the clinic were able to perform therapeutic activities in the home on the days they were not attending/receiving formal therapy. Based on the feedback from these veterans and their caregivers, the manufacturing company is working on modifying the devices to be less cumbersome and more user-friendly (lighter-weight, more mobile, changing software, etc.), as well as more adaptable to participants' homes. Removing these specific barriers will potentially allow participants to utilize the device more easily and more frequently. Since participants expressed that they wished they could have the device in their homes longer than the 3-month usage period required for this pilot project, the project team is working on a proposal to extend this project to a wider area and the new paradigm would extend the usage period until the patient reaches a plateau in progress or no longer wants to use the device.
Abstract-Stroke survivors with severe upper limb (UL) impairment face years of therapy to recover function. Robotassisted therapy (RT) is increasingly used in the field for goaloriented rehabilitation as a means to improve UL function. To be used effectively for wrist and hand therapy, the current RT systems require the patient to have a minimal active range of movement in the UL, and those that do not have active voluntary movement cannot use these systems. We have overcome this limitation by harnessing tongue motion to allow patients to control a robot using synchronous tongue and hand movement. This novel RT device combines a commercially available UL exoskeleton, the Hand Mentor, and our custom-designed Tongue Drive System as its controller. We conducted a proof-of-concept study on six nondisabled participants to evaluate the system usability and a case series on three participants with movement limitations from poststroke hemiparesis. Data from two stroke survivors indicate that for patients with chronic, moderate UL impairment following stroke, a 15-session training regimen resulted in modest decreases in impairment, with functional improvement and improved quality of life. The improvement met the standard of minimal clinically important difference for activities of daily living, mobility, and strength assessments.
Stroke is a leading cause of long-term disability around the world. Many survivors experience upper extremity (UE) impairment with few rehabilitation opportunities, secondary to a lack of voluntary muscle control. We developed a novel rehabilitation paradigm (TDS-HM) that uses a Tongue Drive System (TDS) to control a UE robotic device (Hand Mentor: HM) while engaging with an interactive user interface. In this study, six stroke survivors with moderate to severe UE impairment completed 15 two-hour sessions of TDS-HM training over five weeks. Participants were instructed to move their paretic arm, with synchronized tongue commands to track a target waveform while using visual feedback to make accurate movements. Following TDS-HM training, significant improvements in tracking performance translated into improvements in the UE portion of the Fugl-Meyer Motor Assessment, range of motion, and all subscores for the Stroke Impact Scale. Regression modeling found daily training time to be a significant predictor of decreases in tracking error, indicating the presence of a potential dose-response relationship. The results of this pilot study indicate that the TDS-HM system can elicit significant improvements in moderate to severely impaired stroke survivors. This pilot study gives preliminary insight into the volume of treatment time required to improve outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.