Natural remediation of oil spills is catalyzed by complex microbial consortia. Here we took a wholecommunity approach to investigate bacterial incorporation of petroleum hydrocarbons from a simulated oil spill. We utilized the natural difference in carbon isotopic abundance between a salt marsh ecosystem supported by the 13 C-enriched C 4 grass Spartina alterniflora and 13 C-depleted petroleum to monitor changes in the 13 C content of biomass. Magnetic bead capture methods for selective recovery of bacterial RNA were used to monitor the 13 C content of bacterial biomass during a 2-week experiment. The data show that by the end of the experiment, up to 26% of bacterial biomass was derived from consumption of the freshly spilled oil. The results contrast with the inertness of a nearby relict spill, which occurred in 1969 in West Falmouth, MA. Sequences of 16S rRNA genes from our experimental samples also were consistent with previous reports suggesting the importance of Gamma-and Deltaproteobacteria and Firmicutes in the remineralization of hydrocarbons. The magnetic bead capture approach makes it possible to quantify uptake of petroleum hydrocarbons by microbes in situ. Although employed here at the domain level, RNA capture procedures can be highly specific. The same strategy could be used with genus-level specificity, something which is not currently possible using the 13 C content of biomarker lipids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.