Thermo‐responsive monomers were designed to contain a Diels‐Alder (DA) adduct such that cyclo‐reversion would yield either the maleimide or the furan unit attached to the polymer chain. These thermally responsive monomers were then copolymerized with N‐isopropylacrylamide (NIPAM) via reversible addition‐fragmentation chain‐transfer (RAFT) polymerization to yield linear gradient‐copolymer structures as a comparison to existing nanogel/starlike systems to understand how polymer topology and composition influence solution‐state properties. Using UV–Vis spectroscopy, it was determined that solution‐state properties were thermally dependent and influenced by a number of variables such as comonomer feed ratio, polymer chain end functionality, and polymer backbone length and composition. Manipulation of the feed ratio allowed for control over the cloud point, including the breadth and location of phase separation. Thermal treatment of these copolymers revealed tunable and predictable variations in previously observed transitions, directly correlated to cleavage of the DA adducts and change in polymer backbone composition. Finally, on cooling cycles, a double sigmoid was sometimes observed, indicating a complex globule to random coil transition correlated to polymer chain end composition. These studies help understand how to untie the “monkey's fist.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.