We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1-5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 5 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore.
In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating stable nanopores of similar dimensions as biological nanopores and in achieving sufficiently low-noise and high-bandwidth recordings. Here we show that small silicon nitride nanopores (0.8 to 2-nm-diameter in 5 to 8-nm-thick membranes) can resolve differences between ionic current signals produced by short (30 base) ssDNA homopolymers (poly(dA), poly(dC), poly(dT)), when combined with measurement electronics that allow a signal-to-noise ratio of better than 10 to be achieved at 1 MHz bandwidth. While identifying intramolecular DNA sequences with silicon nitride nanopores will require further improvements in nanopore sensitivity and noise levels, homopolymer differentiation represents an important milestone in the development of solid-state nanopores.
We study translocations of gold nanoparticles and nanorods through silicon nitride nanopores and present a method for determining the surface charge of nanorods from the magnitude of the ionic current change as nanorods pass through the pore. Positively charged nanorods and spherical nanoparticles with average diameters 10 nm and average nanorod lengths between 44 and 65 nm were translocated through 40 nm thick nanopores with diameters between 19 and 27 nm in 1, 10, or 100 mM KCl solutions. Nanorod passage through the nanopores decreases ion current in larger diameter pores, as in the case of typical Coulter counters, but it increases ion current in smaller diameter nanopores, likely because of the interaction of the nanopore's and nanoparticle's double layers. The presented method predicts a surface charge of 26 mC/m(2) for 44 nm long gold nanorods and 18 mC/m(2) for 65 nm long gold nanorods and facilitates future studies of ligand coverage and surface charge effects in anisotropic particles.
Transient receptor potential channels (TRPs) as cellular sensors are thought to function as tetramers. Yet, the molecular determinants governing homotetramerization of heat-activated TRPV1-4 remain largely elusive. In this study, we identified a segment comprising 20 amino acids after the known TRPlike domain in the channel C-terminus that functions as a tetrameric assembly domain (TAD). Purified recombinant C-terminal proteins of TRPV1-4, but not the N-terminus, mediated the protein-protein interaction in in vitro pull-down assay. Western blot analysis combined with confocal calcium imaging further demonstrated that the TAD exerted robust dominant-negative effect on wildtype TRPV1. When fused with membrane-tethered peptide Gap43, the TAD blocked the formation of stable homomultimers, and removal of the TAD from the full length TRPV1 resulted in nonfunctional channels. Calcium imaging and current recording showed that deletion of the TAD in a poreless TRPV1 mutant subunit suppressed its dominantnegative phenotype, confirming the involvement of the TAD in assembly of functional channels. Our findings suggest that the C-terminal TAD in heat-activated TRPV1-4 channels functions as a conserved domain that mediates a direct subunitsubunit interaction for tetrameric assembly.
From their realization just over a decade ago, nanopores in silicon nitride membranes have allowed numerous transport-based single-molecule measurements. Here we report the use of these nanopores as subzeptoliter mixing volumes for the controlled synthesis of metal nanoparticles. Particle synthesis is controlled and monitored through an electric field applied across the nanopore membrane, which is positioned so as to separate electrolyte solutions of a metal precursor and a reducing agent. When the electric field drives reactive ions to the nanopore, a characteristic drop in the ion current is observed, indicating the formation of a nanoparticle inside the nanopore. While traditional chemical synthesis relies on temperature and timing to monitor particle growth, here we observe it in real time by monitoring electrical current. We describe the dynamics of gold particle formation in sub-10 nm diameter silicon nitride pores and the effects of salt concentration and additives on the particle’s shape and size. The current versus time signal during particle formation in the nanopore is in excellent agreement with the Richards growth curve, indicating an access-limited growth mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.