a b s t r a c tThe initial cluster of severe pneumonia cases that triggered the COVID-19 epidemic was identified in Wuhan, China in December 2019. While early cases of the disease were linked to a wet market, human-to-human transmission has driven the rapid spread of the virus throughout China. The Chinese government has implemented containment strategies of city-wide lockdowns, screening at airports and train stations, and isolation of suspected patients; however, the cumulative case count keeps growing every day. The ongoing outbreak presents a challenge for modelers, as limited data are available on the early growth trajectory, and the epidemiological characteristics of the novel coronavirus are yet to be fully elucidated. We use phenomenological models that have been validated during previous outbreaks to generate and assess short-term forecasts of the cumulative number of confirmed reported cases in Hubei province, the epicenter of the epidemic, and for the overall trajectory in China, excluding the province of Hubei. We collect daily reported cumulative confirmed cases for the 2019-nCoV outbreak for each Chinese province from the National Health Commission of China. Here, we provide 5, 10, and 15 day forecasts for five consecutive days, February 5th through February 9th, with quantified uncertainty based on a generalized logistic growth model, the Richards growth model, and a sub-epidemic wave model. Our most recent forecasts reported here, based on data up until February 9, 2020, largely agree across the three models presented and suggest an average range of 7409e7496 additional confirmed cases in Hubei and 1128e1929 additional cases in other provinces within the next five days. Models also predict an average total cumulative case count between 37,415 and 38,028 in Hubei and 11,588e13,499 in other provinces by February 24, 2020. Mean estimates and uncertainty bounds for both Hubei and other provinces have remained relatively stable in the last three reporting dates (February 7th e 9th). We also observe that each of the models predicts that the epidemic has reached saturation in both Hubei and other provinces. Our findings suggest that the containment strategies implemented in China are successfully reducing transmission and that the epidemic growth has slowed in recent days.
The ongoing COVID-19 epidemic continues to spread within and outside of China, despite several social distancing measures implemented by the Chinese government. Limited epidemiological data are available, and recent changes in case definition and reporting further complicate our understanding of the impact of the epidemic, particularly in the epidemic's epicenter.Here we use previously validated phenomenological models to generate short-term forecasts of cumulative reported cases in Guangdong and Zhejiang, China. Using daily reported cumulative case data up until 13 February 2020 from the National Health Commission of China, we report 5and 10-day ahead forecasts of cumulative case reports. Specifically, we generate forecasts using a generalized logistic growth model, the Richards growth model, and a sub-epidemic wave model, which have each been previously used to forecast outbreaks due to different infectious diseases. Forecasts from each of the models suggest the outbreaks may be nearing extinction in both Guangdong and Zhejiang; however, the sub-epidemic model predictions also include the potential for further sustained transmission, particularly in Zhejiang. Our 10-day forecasts across the three models predict an additional 65-81 cases (upper bounds: 169-507) in Guangdong and an additional 44-354 (upper bounds: 141-875) cases in Zhejiang by February 23, 2020. In the best-case scenario, current data suggest that transmission in both provinces is slowing down.
BackgroundMathematical modeling is now frequently used in outbreak investigations to understand underlying mechanisms of infectious disease dynamics, assess patterns in epidemiological data, and forecast the trajectory of epidemics. However, the successful application of mathematical models to guide public health interventions lies in the ability to reliably estimate model parameters and their corresponding uncertainty. Here, we present and illustrate a simple computational method for assessing parameter identifiability in compartmental epidemic models.MethodsWe describe a parametric bootstrap approach to generate simulated data from dynamical systems to quantify parameter uncertainty and identifiability. We calculate confidence intervals and mean squared error of estimated parameter distributions to assess parameter identifiability. To demonstrate this approach, we begin with a low-complexity SEIR model and work through examples of increasingly more complex compartmental models that correspond with applications to pandemic influenza, Ebola, and Zika.ResultsOverall, parameter identifiability issues are more likely to arise with more complex models (based on number of equations/states and parameters). As the number of parameters being jointly estimated increases, the uncertainty surrounding estimated parameters tends to increase, on average, as well. We found that, in most cases, R0 is often robust to parameter identifiability issues affecting individual parameters in the model. Despite large confidence intervals and higher mean squared error of other individual model parameters, R0 can still be estimated with precision and accuracy.ConclusionsBecause public health policies can be influenced by results of mathematical modeling studies, it is important to conduct parameter identifiability analyses prior to fitting the models to available data and to report parameter estimates with quantified uncertainty. The method described is helpful in these regards and enhances the essential toolkit for conducting model-based inferences using compartmental dynamic models.Electronic supplementary materialThe online version of this article (10.1186/s12976-018-0097-6) contains supplementary material, which is available to authorized users.
Background As of March 31, 2020, the ongoing COVID-19 epidemic that started in China in December 2019 is now generating local transmission around the world. The geographic heterogeneity and associated intervention strategies highlight the need to monitor in real time the transmission potential of COVID-19. Singapore provides a unique case example for monitoring transmission, as there have been multiple disease clusters, yet transmission remains relatively continued. Methods Here we estimate the effective reproduction number, Rt, of COVID-19 in Singapore from the publicly available daily case series of imported and autochthonous cases by date of symptoms onset, after adjusting the local cases for reporting delays as of March 17, 2020. We also derive the reproduction number from the distribution of cluster sizes using a branching process analysis that accounts for truncation of case counts. Results The local incidence curve displays sub-exponential growth dynamics, with the reproduction number following a declining trend and reaching an estimate at 0.7 (95% CI 0.3, 1.0) during the first transmission wave by February 14, 2020, while the overall R based on the cluster size distribution as of March 17, 2020, was estimated at 0.6 (95% CI 0.4, 1.02). The overall mean reporting delay was estimated at 6.4 days (95% CI 5.8, 6.9), but it was shorter among imported cases compared to local cases (mean 4.3 vs. 7.6 days, Wilcoxon test, p < 0.001). Conclusion The trajectory of the reproduction number in Singapore underscores the significant effects of successful containment efforts in Singapore, but it also suggests the need to sustain social distancing and active case finding efforts to stomp out all active chains of transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.